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The Research and Technology  
Organisation (RTO) of NATO 

RTO is the single focus in NATO for Defence Research and Technology activities. Its mission is to conduct and promote 
co-operative research and information exchange. The objective is to support the development and effective use of 
national defence research and technology and to meet the military needs of the Alliance, to maintain a technological 
lead, and to provide advice to NATO and national decision makers. The RTO performs its mission with the support of an 
extensive network of national experts. It also ensures effective co-ordination with other NATO bodies involved in R&T 
activities. 

RTO reports both to the Military Committee of NATO and to the Conference of National Armament Directors.  
It comprises a Research and Technology Board (RTB) as the highest level of national representation and the Research 
and Technology Agency (RTA), a dedicated staff with its headquarters in Neuilly, near Paris, France. In order to 
facilitate contacts with the military users and other NATO activities, a small part of the RTA staff is located in NATO 
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carried out by Technical Teams, created for specific activities and with a specific duration. Such Technical Teams can 
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Teams is to ensure the continuity of the expert networks.  

RTO builds upon earlier co-operation in defence research and technology as set-up under the Advisory Group for 
Aerospace Research and Development (AGARD) and the Defence Research Group (DRG). AGARD and the DRG share 
common roots in that they were both established at the initiative of Dr Theodore von Kármán, a leading aerospace 
scientist, who early on recognised the importance of scientific support for the Allied Armed Forces. RTO is capitalising 
on these common roots in order to provide the Alliance and the NATO nations with a strong scientific and technological 
basis that will guarantee a solid base for the future. 
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