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Within the scope of this report on “Uninhabited Military Vehicles: Human Factors in Augmenting the Force”, 
the present chapter is dedicated to the involvement of the human factor with the specific aspect of the 
integration of artificial cognition in the process of vehicle guidance and supervision. In particular, the idea of 
co-operative control, i.e., the co-operation between the human operator and automation, will be addressed. 
Hence, human-automation integration can be viewed from two different standpoints, each of which facilitating 
the other. On the one hand, the human has to be considered as the user of technology, being the operator in a 
somehow automated work environment, responsible for the pursuit of the ongoing processes and provided 
with more or less authority. On the other hand, the consideration of human performance in work processes 
suggests unique approaches to automation and decision systems design for the future. These approaches reveal 
the potential of human-like behaving machines (in the sense of rational behaviour) in certain given task 
domains, even being able to co-operate, as well as the potential of a human-centred automation, promising 
significant performance advances, once introduced into a work place. 

The following sections will provide a discussion of the human involvement aspects as named above from a 
conceptual point of view, to begin with. Further down, application examples taken from current research will 
be illustrated, covering different application areas as well as different perspectives in terms of human 
involvement. 

Firstly, the scope of the discussion will be delimited. Bearing in mind that the following considerations shall 
have the potential to be applicable in the air, land, see, space and underwater domain likewise, it is useful to 
restrict oneself to some more specific field, in particular in closely application-related research. So, the 
aviation domain, specifically flight guidance and mission management of military aircraft, conventionally 
manned and unmanned likewise, will mark the vantage point of the following discussion. The motivation of 
this selection against the background of the consideration of human cognition and decision-making will be 
explained. 

The next section will provide a statement on the current, i.e., the solution of conventional automation being 
strongly influenced by the paradigm of supervisory control. A framework for the modelling of the work 
process and related control levels will be briefly discussed. Domain specific technology approaches will be 
roughly structured, again considering flight guidance as an example. 

Problems arising from conventional automation approaches will be discussed in the third section. Perspectives 
of future automation and required extensions will be introduced. At this stage the notion of an Artificial 
Cognitive Unit (ACU) as part of a work system will be introduced. The required capabilities of such a 
machine being a team mate will be estimated. 

The outcome of the consideration of these required advances in automation is to concentrate on the treatment 
of human and machine cognition as an inter-disciplinary approach based upon cognitive psychology and 
artificial intelligence as branch of information technology. This will be the objective of the fourth section.  
As an interim result the theory of the Cognitive Process will be introduced in this section. 
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Section 5.5 briefly gives some information on realisation aspects of the Cognitive Process, being the 
underlying theory itself. Creating a cognitive system according to this theory requires the implementation of a 
systems engineering framework. 

Section 5.6 will broaden the view from which the issue of artificial cognition and co-operative automation has 
been looked at so far, by opening up the podium for different, but related perspectives covering the fields of 
Artificial Intelligence methods evaluation, knowledge engineering and an application in the underwater 
vehicle guidance domain. 

5.1 SCOPE 

As already mentioned in the introduction the rather broad scope of possible air, land, sea, space and 
underwater applications needs to be narrowed somehow, taking advantage of digging deeper into the specific 
problems of one particular domain, finally providing beneficial insight ready to be adopted by other 
application areas. In anticipation of the main scope of this chapter the airborne application is the choice. It is a 
fact, that conventional automation, a term which will be defined further down, can be regarded as very 
advanced in this domain. Modern electronic fly-by-wire systems enable an almost fully automatic 
performance of an entire mission, as daily demonstrated in thousands of civil airliner flights. Generating and 
pursuing a four-dimensional flight trajectory is not a real technological challenge any more, but provides a 
very sustainable platform for further considerations to be endeavoured here. Especially the higher levels of 
cognitive performance involving problem-solving, and decision-making are still mostly attributed to the 
human operator acting as supervisor of a technical process. 

In contrast to this, the situation, e.g., in ground based application is somehow inverted. Autonomous driving is 
still a complicated issue (as observed during the recent DARPA grand challenge), i.e., the automation of the 
lower guidance levels including the recognition of the nearest environment and the resulting stabilisation and 
tracking tasks are not at all fully available today. In fact, current research is focused here. On the other hand a 
car navigation system supporting on the supervisory control level is almost present in every upper middle-
sized class car. Virtually every tactical decision emerging in every day’s driving will already be covered. 
Currently up-coming so-called driver assistant systems, which in most cases correspond with the functions of 
conventional aircraft automation, call for action in terms of central co-ordination of their supervision for 
efficient operation. 

Again, the scope of this chapter shall be the automation of tasks on that supervisory level. As a result, systems 
shall be enabled towards autonomous task accomplishment. This issue of autonomy will be discussed in some 
more depth. Another very important issue will be the consideration of human-machine teaming and  
co-operation. The following sub-sections outline a typical aerial warfare mission to serve as a benchmark, 
providing a most interesting challenge for the concepts to be presented here – i.e., the relevant scenario shall 
be described mostly on a symbolic level, minimising the involvement of the processing of signals. The focus 
shall be more upon the logical relations between the objects, rather than upon their physical properties. 

5.1.1 Typical Scenario from the Military Aviation Domain 
The benchmark mission shall be taken from the aerial warfare domain. Figure 5-1 depicts an overview of the 
scenario and the relevant objects of a multi-ship air-to-ground attack mission. The own forces consist of the 
airborne component covering different rolls such as reconnaissance (RECCE), suppression of enemy air 
defence (SEAD) and attack. Furthermore, a command and control (C2) component might be involved, 
possibly airborne, typically ground-based. 



ARTIFICIAL COGNITION AND CO-OPERATIVE AUTOMATION 

RTO-TR-HFM-078 5 - 3 

 

 

 

Figure 5-1: Scenario for Multi-Ship Air-to-Ground Attack Mission. 

The hostile forces consist mainly of two components, i.e., a military target, fixed or moving and a ground-
based air-defence system represented by surface-to-air missile (SAM) sites, which can be switched on and off, 
and which are to some extent known during the mission preparation phase both of which are separated from 
the safe territory by the forward line of own troops (FLOT). The mission order requires the attack component 
to destroy the hostile target. To achieve this, SAM-sites temporarily have to be suppressed or destroyed. 

Although massively simplified with respect to asymmetric warfare scenarios currently discussed by NATO, 
this scenario bears a great variety of challenges in terms of integrated mission systems and automation. 

5.1.2 Forces Structure 
The own airborne forces will be a whatsoever mix of manned and un-manned platforms, to begin with.  
The scenario envisions a set of platforms, which have no static role or task allocation (A static role allocation in 
this context could be “Reconnaissance A/C or UAV searching, combat A/C or UAV shooting”). These platforms 
form a heterogeneous team, which means that the entities may differ from each other with respect to resources 
and capabilities, such as sensors, actuators, weapons, and information processing. This heterogeneous team 
structure does not prohibit homogeneous sub-structures, i.e., that some team members have equal or partially 
overlapping resources and capabilities. The envisioned scenario requires co-operation capabilities of the 
participating forces, because otherwise the mission cannot be accomplished [1]. 

A more generalised standpoint is shown in Figure 5-2. Starting from a classical situation, where single or 
multiple manned vehicles perform the mission. The critical questions arise when un-inhabited aerial vehicles 
(UAV) enter the scene. It has to be decided whether the UAVs will substitute or supplement the conventional 
manned platforms [2]. Obviously in some cases substitution will be an isolated solution, especially thinking of 
the so-called DDD-missions (dull-dirty-dangerous) – but generally, we certainly have to face the technological 
challenges of the solution of supplementation of forces, including the issues of manned-unmanned teaming,  
co-operation and supervision. 
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Figure 5-2: Possible Characteristics in Future UAV Deployment –  
Substitution and/or Supplementation. 

5.1.3 References 
[1] Ertl, C. and Schulte, A. (2004, September). System Design Concepts for Co-operative and Autonomous 

Mission Accomplishment of UAVs. In: Deutscher Luft- und Raumfahrtkongress. Dresden, GE. 20-23. 

[2] Schulte, A. (2003, 10th – 13th June). Systems Engineering Framework Defining Required Functions of 
Un-inhabited Intelligent Vehicle Guidance. In: NATO RTO. Human Factors and Medicine Panel. Task 
Group HFM-078 on Unmanned Military Vehicles: Human Factors in Augmenting the Force. Leiden, NL. 

5.2 THE WORK PROCESS AND CONVENTIONAL AUTOMATION’S SOLUTION 

The last section gave a brief outline of the challenge for future mission systems. Needless to say, this type of 
mission can already be performed today, in one or the other way. The scope of this report of course is the 
augmented exploitation of presently unrevealed abilities in manned-unmanned teaming. To do so, the first 
step here shall be characterisation of current automation, i.e., the solution of conventional automation. For the 
later discrimination between automatic and autonomous performance the consideration of the work system 
will be helpful. 

5.2.1 The Work System 
The work system as a general ergonomics concept [1] has been utilised in the application domain of human-
machine co-operation in aircraft flight guidance by [2]. Figure 5-3 shows an adaptation of the concept 
incorporating some application specific imagery for the purpose of intuitive understanding. 
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Figure 5-3: Concept of Work System. 

The work system consists of three major elements, i.e., the operator, the work object and operation-assisting 
means, as characterised in some more detail here: 

• Operator: In the traditional view of a work system the operator is usually a human operator, being in 
charge of performing a certain given task, such as accomplishing a combat mission, as according to 
the chosen application. The human operator is the high end decision element of the work system.  
He determines and supervises within the work system what will happen with the work object.  
This can be done by working on any required performance level, including manual control. In highly 
automated work systems, as we are talking of, the human performance is usually focused on 
supervisory control, including decision-making and problem-solving in order to comply with the 
work task. As according to the common view of ergonomics, the abilities of the skilled and trained 
human operator in terms of information processing performance can be seen as pretty much invariant 
in an average.  

•  Work Object: The notion of the work object is not necessarily restricted to the physical nature of 
whatever machine, but also comprises dynamical processes, i.e., the progression of the situation over 
time. In the chosen application domain, the work object may be the mission of a combat aircraft or 
UAV. 

• Operation-Assisting Means: The concept of the operation-assisting means can be seen as a container 
for whatever tools or automation of the work place is available, being computerised pieces of 
technology in many cases. In our application domain an auto-flight/autopilot system including the 
human-machine control interface (i.e., FCU – flight control unit), or even the aircraft itself as a means 
of transport may serve as typical examples. Common to the nature of various operation-assisting 
means is the fact that they only perform certain sub-tasks (e.g., pursuing a given flight trajectory, 
holding a defined heading). Such a sub-task does not form a work system itself, obviously being only 
a part of another higher level work task. In today’s common ergonomic design, the operation-assisting 
means are typically subjected to the endeavours of adaptation and optimisation in order to meet 
overall system requirements and further improvements. 
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These elements will be combined to the work system set up in order to achieve a certain work result on the 
basis of a given high level work task. The accomplishment of a military flight mission may give a good idea 
of what is meant here. Finally, environmental conditions and external resources, such as information, material, 
or energy will affect the ongoing work process. 

The concept of the work system seems very suitable for the consideration of problems to be discussed in the 
further pursuit of this elaboration. The reason for this is the fact that the work process is constituted by the 
work task and the desired result, no matter its technical or organisational structure. However, exactly this 
technical or organisational structure might as well be easily modelled and analysed by the framework given by 
the work system. Yet, the notion of the work system at this stage gives no hints of modelling the mechanisms 
of human performance. 

In order to do so, a very common model of human control performance shall be mentioned here, where a 
distinction is drawn between manual and supervisory control. This issue has been elaborately investigated by 
Thomas B. Sheridan at MIT (e.g., [3]) with a more recent focus on tele-operation [4], where obviously 
supervisory control predominates due to the remoteness of the work object. 

Figure 5-4, which is adapted from [3], shows an automated human-machine system with the human operator 
in manual control mode on the left hand side. In this situation the human operator is busy in feedback control 
of the inner loops of the underlying process. Typical for the manual control mode are any kind of tracking 
tasks such as lateral car steering or attitude control of an aircraft. Automation is mainly responsible for the 
transformation and transmission of the required signals. On the right hand side of Figure 5-4, the automation 
takes over the role of automatically closing higher bandwidth control loops as to the dynamic process. In this 
case the human operator’s role is shifted towards the supervisory control mode, where the tasks of monitoring 
and setting demand values for the automated control process are relevant. 

Machine / Process

Human Operator

Automation

Controls Displays

Effectors Sensors

Machine / Process

Human Operator

Automation

Controls Displays

Effectors Sensors

manual control supervisory control  

Figure 5-4: Manual and Supervisory Control. 
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In order to approach another definition of supervisory control [5] states: 

“When a process is semi-automated or responds very slowly, it is not necessary for a human to 
devote full attention to that process, […] In situations where [… the process] is automatically 
controlled, we can view the human as a supervisor whose role includes monitoring the process 
[…], adjusting the reference points […], and intervening in the case of failures and 
emergencies.” [Rouse, 1980] 

Many real-world applications in fact will require human-machine interaction as a mixture of manual and 
supervisory control as a function of the level of automation selected. The human operator will permanently 
toggle between the two control modes, allocating varying amounts of attention to one or the other task. 

In order to prepare a common ground for the further discussion of models of human performance, this sub-
section shall be closing with the introduction of a human model of manual and supervisory control advocated 
by [5]. The adapted model is set in the aviation domain context and depicted in Figure 5-5. 

Machine / Process
Operator / Pilot

Actuators Controller Filter Sensors

Problem-solver
Planner

Decision-maker

Noise

environmental
stimuli

 

Figure 5-5: Model of Human Manual and Supervisory Control. 

In Figure 5-5 the direct functional chain of sensing process and environmental parameters, filtering the 
information, applying control laws, and finally acting on the process represents all that is involved in the 
execution of manual control. On a supervisory control level gathered and filtered information will be fed into 
a functional block representing problem-solving, planning and decision-making. This block in turn will 
determine the demand values for the controller. Furthermore it allows the selection of the control mode and 
the adaptation of the control laws according to the current task. Finally, the decision-maker will adjust the 
filter in terms of selective allocation of resources such as attention (e.g., [6]). 

5.2.2 The Hierarchy of a Conventional Guidance and Control System 
In the previous sub-section the focus was drawn to the human operator’s aspects of the work system for the 
first time. This sub-section shall concentrate more upon the operation-assisting means, i.e., the automation. 



ARTIFICIAL COGNITION AND CO-OPERATIVE AUTOMATION 

5 - 8 RTO-TR-HFM-078 

 

 

Obviously, the characteristic of the operation-assisting means is dependent on the application domain to a 
great extent. This is the point where we get back to the aviation domain as an example. 

Figure 5-6 shows the major building blocks of a common hierarchical architecture of a state-of-the-art flight 
guidance and control system with several nested loops (adapted from [7]). Besides the many closed control 
loops on the machine side, one loop is closed involving the human operator, i.e., the pilot. Obviously this 
architecture puts the pilot into a versatile situation of supervisory control, using all these fancy machine 
functions. Direct intervention in manual control style is likewise possible on the lowest (i.e., most right in 
Figure 5-6) interaction level. It should be mentioned that Sheridan’s notion of manual control,  
being unaffected by automated control loops, is to some extent impaired by the current technology of control-
configured vehicles (“fly-by-wire”), where the lowest available human interaction level already implicates 
automatic control. Nevertheless, the human interaction with such a system might be denoted as manual control 
on that particular interaction level. 

SensorsAttitude
Control

Auto-
pilot
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Management
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Pilot

Mission Order

Controls

C&C

 

Figure 5-6: Conventional Guidance and Control System (Manned A/C). 

While the pilot is controlling and supervising his machine, he himself is supervised by some external authority 
such as any imaginable implementation of command and control. In many western leaderships, the interface 
between command and control and the local operators is implemented on the basis of the assignment of work 
orders, i.e., mission orders in our domain. 

A major performance feature of an educated, trained, and well skilled operator is the capability of 
transforming this work order into a desired work result. This structure, though, is tightly related to the 
conception of the work system according to the previous sub-section. 

Figure 5-7 shows a situation which emerges when the pilot is removed from the vehicle and placed 
somewhere else, e.g., in a ground control station. Again, this remote operator will receive a mission order 
from any superior command and control authority. Usually, the operator now will interact with the UAV by 
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passing a detailed mission plan, which has to be worked out on the basis of the mission order, to the vehicle. 
In the case of a fully automated system, this initial mission plan will be pursued by the vehicle by use of the 
available on-board technology. Usually, with conventional technology, exceptional situations on the mission 
level, such as occurring obstacles, changes in the tactical situation, or other constraining factors cannot be 
handled. As a result of a monitoring function of the ground operator adaptations of the mission plan or 
reversing to outer loop guidance commands may occur. Usually, there are a couple of restraining factors for 
the remote operation of the vehicle: 

• Manual control of the inner loops may not be possible or desirable because of intolerable time delays 
in the data transmission with respect to the inner loop dynamics time constants. Thus, the remote 
operation heavily relies upon the availability, the performance and integrity of some specific guidance 
functions, such as auto-land, otherwise requiring manual interactions. 

• Insufficient downlink bandwidth and/or incomplete sensor coverage, with respect to the task,  
can cause what may be called “keyhole perspective” [8] for the remote operator, potentially affecting 
the correctness or quality of his or her decisions. 

• The availability of data link, i.e., the ability to monitor (via telemetry) or control (via telecommand) 
the vehicle remotely may be disturbed. As a result, no recognition of nor reaction to unexpected 
situations is possible any more on the human operator’s side. 
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Figure 5-7: Conventional Guidance and Control System (Unmanned A/C). 

What just has been elaborated for the flight guidance and navigation task holds true for other concurrent tasks 
of the operator, such as responding to a tactical environment or deploying mission related payload, as well. 
Air-to-air combat may serve as an extreme example, where sensory information from radar and identification 
equipment dictate the operator’s actions with regard to trajectory determination as well as weapon aiming and 
deployment, altogether facilitated by complex, highly automated systems themselves. Here again a 
complicated mixture of manual and supervisory control tasks can be observed. Automation technology is 
predominantly available on the manual control level, if at all. 
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Figure 5-8 tries to summarise the just now characterised situation with respect to conventional automation.  
In order to achieve a desired work result, running a machine or controlling a process, usually a more or less 
wide spectrum of tasks and related sub-tasks has to be worked on. This may include sub-tasks such as flying 
an aircraft, operating in a tactical scenario, managing avionics systems, and communicating with others, each 
of which involving automation to some specific extent. Although there may be “horizontal” interaction 
between automation involved in different task domains to some limited extent (e.g., the automatic 
performance of a terrain evasive manoeuvre, or the automatic transmission of radar tracks via tactical data 
link), the integration of information in order to pursue the overall task is performed by the human operator on 
a supervisory control level mostly. So, the interaction within the automation is predominantly vertically 
structured. A conventional flight guidance and control system (see Figure 5-6) is certainly a very good 
example, whereas the human operator is supposed to toggle between the different tasks horizontally on a 
supervisory performance level. 
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Figure 5-8: Organisational Structure of Conventionally,  
i.e., Hierarchically Automated Human-Machine Systems. 

Having this rather simple organisational model of automation at hand the following section shall illuminate 
some technical pitfalls associated with this structure before some suggestions of improvements will be made. 
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5.3 PROBLEM DEFINITION 

The last section introduced one possible approach to how automation in human-machine systems could be 
looked at. Without being too specific on particular mission systems, some peculiarities of current,  
i.e., conventional automation systems have been deduced. This section provides a closer look upon problems 
which may arise in use of this automation approach. In the further pursuit of this section a possible perspective 
of future automation technology will be given, finally ending up with some very particular requirements to be 
implemented before such systems will be put into work. 

5.3.1 Shortfalls with Conventional Automation 
It has long since been known that erroneous human action is the predominating factor in aviation accidents, 
however, it is fair to state that many of these human errors are caused by over-demands (see grey line in  
Figure 5-9) on the pilot’s resources [1], the latter representing the natural limiting factor for performance  
(see straight blue line in Figure 5-9). In order to overcome this situation the introduction of automation as 
described above was most beneficial in many situations, which otherwise could not be handled (see green line 
in Figure 5-9). On the other hand, new types of latent overtaxing-prone situations appeared with the increased 
introduction of automated functions [Onken, 1999] (see red line in Figure 5-9). 
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Figure 5-9: Operator Overload Caused by Conventional Automation. 
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Charles E. Billings investigated typical shortfalls of current aviation automation [2], with a particular view 
upon the human interaction with automation. According to Billings, the most critical design factors are 
complexity (Will the extent of the automatic function be fully understood by the human operator?), brittleness 
(Will the complex automation be fit for any imaginable situation or purpose?), opacity (Will the automatic 
execution provide sufficient and intelligible feedback to the human operator?), and literalism (Will the 
automation understand the human operator’s control actions as ‘naturally’ as they are meant?). Generally 
spoken, Billings’ answer to these questions with respect to current automation is “No”, resulting in a situation 
which is usually referred to as clumsy automation [3]. 

Figure 5-10 explains the situation by use of the organisational structure of conventional automation  
with respect to task allocation between automation and the human operator as introduced previously  
(see Figure 5-8). Obviously, the classical task allocation suffers from some typical difficulties [23]. 
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Figure 5-10: Shortfalls with Conventional Automation. 

In particular under the assumption of increasing complexity of automation, the human operator is almost 
completely separated from the underlying process. The long term problem of loss of skills, i.e., erosion of 
competence, in supervisory control has been widely reported on, e.g., [4,5]. Within the same class of difficulties 
the human-out-of-the-loop problem represents the corresponding short term issue, addressing situations where 
operators almost fully rely upon the automation performance to an extent that any abnormal situation will 
inevitably cause human overload and erroneous action. [6] states: 

“[…] by taking away the easy parts of his task, automation can make the difficult parts of a 
human operator’s task more difficult.” [6] 

Quite closely linked with Billings’ notion of brittleness is the perception that conventional automation will 
usually not be able to recover from undesired situations induced by malfunctions, faulty operations or just the 
unexpected. The major reason for this limpness of the system is its lack of excellence in situation 
understanding and goal driven performance on the machine side, i.e., the missing capability of current 
automation systems to perform on a supervisory level in order to pursue the overall goals of the work system. 
As a good explanation for this circumstance the example of a simple autopilot function may serve [24].  
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Once activated, an “altitude acquire” function will pursue its specific sub-task of capturing a flight altitude 
pre-selected by the pilot in an almost perfect manner, no matter what may be of any relevance otherwise,  
e.g., ground or traffic proximity, exposure to enemy radar, or faulty demand setting or mode selection by the 
pilot in the sense of for instance a misinterpreted ATC clearance. So, automation offers a dedicated set of 
more or less independent functions, each of which being responsible for a particular sub-task. The situation 
can get even more precarious when these functions start getting linked horizontally without that being 
transparent to the human operator (i.e., opacity due to [Billings, 2]). Modern flight management systems often 
bear this characteristic, but still, conventional automation is not at all capable of performing any higher 
decision loop in the sense of supervisory control. 

5.3.2 Perspectives of Future Automation 
As an essence from the last sub-section, automation complexity can be seen as the most critical issue.  
To begin with, complex automation used to be the key to a major increase in mission effectiveness and flight 
safety (see Figure 5-11). Due to limited resources and capabilities on the human operator’s side, a further 
increase of automation complexity has no longer been beneficial in terms of these productivity factors  
(see Figure 5-11). Obviously, automation became too complex to be reliably handled by human operators.  
The reason for this seems to be found in the unpredictability of the machine’s behaviour due to inconsistencies 
between the machine function and the human operator’s mental model of it. Conventional automation itself,  
in the first place meant to be an operation-assisting means, became a complex element within the already 
complex work system. 
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Figure 5-11: Perspectives of Future Automation. 

In order to tackle this problem a new approach to automation has to be introduced into work systems.  
Figure 5-11 illustrates the vision of further increasing the productivity factors effectiveness and safety by 
advanced automation at the cost of furthermore complexity, but how shall this “advanced automation”  
be shaped? 

Figure 5-12 tries to illustrate some first ideas in order to overcome the problems with conventional automation 
described earlier. Advanced automation shall not displace the human operator in a work system, but share the 
tasks in a close-partner work relationship. Task allocation shall not be static, but may be adapted to the current 
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situation’s needs. This includes the facilitation of redundancy in functions in principal by at least a partial 
overlap in capabilities with respect to the task spectrum. The responsibility of automation (not necessarily 
authority) shall be extended to the supervisory control level, i.e., automation shall be enabled to perform 
certain tasks under consideration of the overall work task of the work system. Thereby, particularly brittleness 
will be tackled. Coordination and communication with such an automation system shall be supported on all 
performance levels, i.e., reaching from detailed low level information (reducing opacity of the machine 
solutions) up to abstract human-like information exchange on the supervisory level (tackling literalism of the 
automation). In general, it may be accepted that this approach to cognitive coupling [7] can be a contributing 
factor to the mitigation of disadvantageous complexity effects. 
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Figure 5-12: Co-operative Structure of Human-Machine Systems with Advanced Automation. 

5.3.2.1 Cognitive Automation 

An entity enabled to exhibit the aforementioned behaviour facets shall be referred to as Artificial Cognitive 
Unit (ACU) [24]. As indicated above, supervision and co-operation, as accomplishments of a machine system, 
require special capabilities. These capabilities were combined within the notion of such an Artificial Cognitive 
Unit. Obviously, the performance feature of cognition is the core element which has to be dealt with in order 
to design such an ACU. From the point of view of the discipline of cognitive psychology (e.g., [8,9]) human, 
i.e., natural cognition can be described by considering: 

• Perception and allocation of attention; 

• Knowledge representation and memory; 

• Problem solving, reasoning and decision making; 

• Language comprehension and its generation; and 

• Learning and the development of expertise. 

The availability of at least some of these aspects of cognition are the necessary pre-requisite to perform the 
supervisory control task (compare Sheridan, [26]) with respect to the compliancy with the overall work task. 
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Figure 5-13 shows the work system, according to Figure 5-3, with the human operator mimicked by an ACU.  
In this configuration the ACU represents all the performance requirements found to be attributed to the human 
operator earlier on, i.e., the performance of decision-making, problem-solving and supervision of the operation-
assisting means and the work object in order to comply with the overall work task. The major difference is that 
the ACU is no longer invariant in terms of performance characteristics like its human archetype, but on the other 
hand, there has to be found a way how to design it according to the abovementioned requirements. 

Task Result

Work Object (e.g. flying a combat A/C)

Artificial Cognitive Unit Operation-Assisting Means
(e.g. Autopilot)

Environmental Conditions
Resources

decision
problem-solving

supervision
i.o.t. accomplish work task

perform certain sub-tasks

to be designed can be adapted

externally given  

Figure 5-13: Artificial Cognitive Unit (ACU) Mimicking Human Operator in a “Work System”. 

Strictly, Figure 5-13 is not representing a work system any longer, since the presence of a human operator as 
part of the operating element is required by definition [25]. Such a system would be degenerated from the 
standpoint of “work”, just existing for its own sake and not serving any human purpose. As soon as the human 
is involved as the tasking and monitoring element, which is always the case, the human will be part of the 
work system. The implications of this statement shall be discussed in the subsequent paragraph. 

5.3.2.2 Automatic and Autonomous Performance 

The (theoretical) configuration depicted in Figure 5-13, where the system is functioning (i.e., transforming the 
work object, e.g., flight, according to a work task into a desired work result) independently from any human 
intervention, can be referred to as being an autonomous system with respect to that particular work task.  
For this definition of autonomy a crucial factor is that a full work system is considered. Automated part-tasks, 
such as autopilot functions, working independently from human intervention likewise, are considered to be 
automatic. 

Figure 5-14 [10] has to be understood in connection with the Figures 5-6 and 5-7. It shows the separation of 
automatic and autonomous systems from a more general point of view. The framed elements in Figure 5-14 
form the considered work system. 
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Figure 5-14: Comparison between Automatic and Autonomous Mission  
Accomplishment (Framed Elements Form Work System). 

In case A of Figure 5-14 the work system is consisting of a human operator (pilot) and the vehicle, the latter 
representing the work object and the operation-assisting means, i.e., the conventional setup of a manned 
vehicle. In this configuration the operation-assisting means will provide diverse automatic functions. Having 
conventional manned vehicles or aircraft, an external command and control unit works out a mission order as 
a representation of the desired mission objective and passes it to the operator, who accomplishes the mission. 
Such a work system acts autonomously and co-operatively, depending on the current situation, the goals,  
the system’s and operator’s capabilities and resources. 

Case B of Figure 5-14 represents the solution of conventional automation to the guidance of an uninhabited 
vehicle (compare Figure 5-7). In this setup the work system is spatially dislocated, bearing the aforementioned 
restraining factors for remote operation. The vehicle itself may be considered as being semi-automatic in the 
case of loose supervision or even fully automatic if no monitoring or supervision is desired at all. Such a 
vehicle typically has no ‘on-board intelligence’, and therefore, will accomplish a mission automatically.  
In some occasions, if there is a person on ground acting as a remote operator within the guidance loop, he has 
some influence on the actions of the vehicle during operation and the vehicle acts partially automatically. 
Otherwise, the person takes more the role of a supervisor, who usually provides the vehicle with pre-planned 
instructions, possibly including some action alternatives. How adequate an automatic vehicle reacts to a 
situation change depends in case of operator-guided operation on whether the operator gets enough 
information about the situation in which the vehicle is located. If a vehicle operates fully automatically, it can 
only react to situation changes, which were foreseen by the operator. 

Case C of Figure 5-14 is the situation where an autonomously performing work system is only consisting of 
machine elements, i.e., the vehicle including operation-assisting means and the ACU, which is capable of 
generating human-like behaviour. Exclusively in this configuration the remote agent (i.e., the vehicle and its 
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guidance) forms an autonomous entity itself. Having this capability on-board several vehicles with partially 
overlapping (i.e., partly equal and partly different) resources and capabilities, it becomes possible to have a 
mission accomplished autonomously and co-operatively with an external supervisor providing an overall 
mission objective to all of them. [10] 

5.3.2.3 Cognitive Automation as Part of the Operation-Assisting Means 

In a traditional sense the human operator provides capability of cognition within a conventional work system, 
whereas the operation-assisting means do not. As an alternative to full autonomy without human intervention 
a configuration, where an artificial cognitive component in addition to the human operator might be 
introduced into the work system. 

Figure 5-15 [24] shows the ACU being part of the operation-assisting means in an otherwise conventional, 
manned work system setup. 

Task Result

Work Object (e.g. flying a combat A/C)

Human Operator Operation-Assisting Means
(e.g. Autopilot)

Environmental Conditions
Resources

 

Figure 5-15: Work System with ACU in Configuration “Cognitive  
Automation as Part of Operation-Assisting Means”. 

“As opposed to conventional automation, cognitive automation works on the basis of 
comprehensive knowledge about the work process objectives and goals […], pertinent task 
options and necessary data describing the current situation in the work process. […] Making use 
of these capabilities in terms of operation-assisting means in the work system, it has no longer to 
be the exclusive task of the [human] operator to monitor the process subject to the prime work 
system objectives.” [24] 

In the case of cognitive automation incorporated into the operation assisting means the vision of a “cognitive 
autopilot”, as opposed to the conventional autopilot mentioned earlier on, would certainly perform superiorly. 
Once activated, a “cognitive altitude acquire” function would check the mode selection and the demand 
setting against the context of the current mission task. It would notice ground or traffic proximity, or maybe 
exposure to enemy radar. It would conclude that these conditions will result in loss of the mission or even 
disaster. Finally, it would work out an appropriate solution, either by indicating to the human operator the 
disturbance or by suggesting or even performing corrective actions. 
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This is pretty much the basic idea of a cognitive assistant system. Several research activities proved this concept 
more or less recently, the Cockpit Assistant System CASSY [11], the Crew Assistant Military Aircraft CAMA 
[12,13], and the Tactical Information and Mission Management System TIMMS [14]. Some more information 
on these projects will be given at the end of this chapter. Onken summarises the requirements for this class of 
systems: 

“(1) It must be ensured the representation of the full picture of the flight situation, including that 
the attention of the cockpit crew is guided towards the objectively most urgent task or sub-task as 
demanded in that situation. 

(2) A situation with overcharge of the cockpit crew might come up even when situation 
awareness has been achieved by the pilot crew. In this case the assistant system has to transfer 
the situation into a normal one which can be handled by the crew in a normal manner.” [15] 

In these so-called two basic requirements for human-machine interaction the way is paved already for the next 
step in the integration of cognitive automation in a work system, in the sense of cognitively facilitated human-
machine co-operation as another alternative work system configuration. 

5.3.2.4 Co-operative Automation as By-Product of Cognitive Automation 

As opposed to mere interaction, co-operation has particular characteristics. Co-operating units in a work system 
pursue additional goals. Billings [2] formulates respective design principles for human-machine co-operation in 
the context of human centred design: 

The human operator must be 

• Actively involved; 

• Adequately informed; and 

• Able to monitor the automation assisting him. 

The automated systems must 

• Be predictable; and 

• Also be enabled to monitor the human operator. 

And, 

• Every intelligent system element must know the intent of other intelligent system elements. 

Billings, though, does not offer a solution how the intelligent machine elements shall be designed, yet.  
He does not bear machine-machine co-operation in mind, either. 

Figure 5-16 [24] shows a work system setup, where the human operator and the ACU form a team. In this 
configuration the ACU has reached 

“[…] the high-end authority level for decisions in the work system, which was, so far, occupied 
by the human operator alone.” [24] 
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Figure 5-16: Work System with ACU in Configuration “Co-operative Automation”. 

As a consequence of this consideration each of the team members has to have the ability to carry out all tasks, 
which might be crucial for the performance of the overall work task. A crew co-ordination concept,  
very similar to one examined for human-human cockpit teams [3,16], has to be developed. 

5.3.3 Technological Challenges 
In the previous section the introduction of artificial cognitive capabilities in a work system was discussed.  
The perspective of this advanced automation technology approach is to overcome current problems with 
clumsy systems in human-machine co-operation, in order to facilitate machine autonomy without human 
intervention, and to support human operators in demanding tasks, which tend to overload human resources. 
The term of an Artificial Cognitive Unit (ACU) has been introduced, so far without explaining, how such a 
system element shall be constructed. 

Figure 5-17 visualises the various technological challenges to be borne in order to implement such a system: 
• Comprehensive situation perception: Figure 5-5 shows that in principle the human operator on-board 

has access to information (environmental stimuli) which is offered to him in addition to the information 
from his vehicle systems. The human operator is able to look out of the window of his vehicle; he can 
hear environmental noise or follow the voice communication on the radio. He can sense structural 
vibrations of his vehicle and even smell smoke in the cabin, however, the most important point is 
probably that the human operator has the principal capability to understand most of these perceptions 
and put them into the context of previous experiences. Conventional automation is lacking most of these 
abilities, and thereby, has no access to a wide spectrum of environmental information relevant for 
crucial decisions. In order to facilitate cognitive behaviour in a machine system the ability to perceive 
the environment has to be ensured. Dickmanns and his research group contributed very substantial work 
in the area of computer vision for autonomous road vehicle guidance (e.g., [17]). 

• Cognitive capabilities: The next step after a successful perception of the world will be the deduction 
of rational behaviour on the basis of the gathered information. Therefore, further cognitive 
capabilities (of course, perception is a cognitive capability itself already) will be needed, both, on the 
human operator’s side as well as on behalf of the machine. What humans can do seemingly 
effortlessly has to be given to the automation by design. Automation shall be enabled to built up a 
mental model of the surrounding world, which can be understood as the comprehension of the 
situation and its projection into the future (e.g., [18] as one point of view). The so-gained situational 



ARTIFICIAL COGNITION AND CO-OPERATIVE AUTOMATION 

5 - 20 RTO-TR-HFM-078 

 

 

knowledge shall be adequately represented in memory (e.g., [19] or [20] as two classical sources).  
On the basis of this situation specific knowledge and other pre-recorded knowledge, problem-solving 
and decision-making shall be performed in order to achieve certain goals. The modelling of this 
component of cognition will be the main subject of the next section of this chapter, resulting in the 
theory of the Cognitive Process [24]. 

• Human-machine interaction: Having an intelligent unit within the work system, which is enabled to 
gather and understand the entire situation, to make decisions and to exhibit rational and goal-oriented 
behaviour, it will be necessary to make it interact with the human operator. First of all, appropriate 
communication channels have to be found. A system designed to perform on the higher levels of 
cognition certainly offers the principal opportunity to use language as communication code [21], 
besides others. Furthermore, an appropriate co-ordination technique has to be found in order to 
facilitate a fruitful co-operation aiming upon the accomplishment of a common mission objective.  
In the long term, intelligent machines shall appreciate other intelligent agents in their environment, 
either human or artificial, as such. In this case, co-operation will be an additional behaviour of a 
machine, based upon cognitive capabilities [10]. 

• Level of automation and authority: Like with human teams, the question of the allocation of tasks and 
authorities has to be answered for human-machine teams, as well as for machine-machine teams. 
Weiner [3] investigated the issue of crew resource management for the aviation domain. Billings [2] 
made his suggestions for human centred aircraft automation design and human-machine co-operation. 
Taylor [22] worked on the problem of allocation of authorities within a human-machine team with the 
aim to provide the necessary and sufficient levels of authority for the task automation – but still,  
only the existence of artificial cognitive team mates will reveal the critical questions in the context of 
the allocation of tasks and authority, which have to be tackled. 

•  Paradigm shift: Finally, users, consumers, designers, companies, procurement officers, and customers, 
who are involved in the introduction of a new automation technology in their specific way, have to 
reconsider the issue of the evolution of personal, social, and economic factors, which comes along with 
such a process. In some cases a paradigm shift will be inevitable. At the very deep end of the chain, 
training issues related with the handling of somehow intelligent machinery will certainly come up. 
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Figure 5-17: Technological Challenges in Advanced Automation. 
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The following section “Approaching Cognition” will be dedicated to the analysis of cognitive capabilities of 
humans. On the basis of this, an overview over information technology approaches to artificial cognition will 
be given. As a result, the so-called Cognitive Process (CP) as a theoretical approach to machine intelligence 
will be introduced. 
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5.4 APPROACHING COGNITION 

In the previous sections the term “cognition” has been used rather sloppy in the sense of a particular human 
capability, and, hopefully, of a future machine function. This section shall sort things out in terms of how 
humans perform and how a machine has to be constructed in order to exhibit intelligent behaviour, likewise. 
“Intelligence”, a term which can be replaced by “cognition” in most cases in this context, is defined rather 
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vaguely defined in habitual language use, although being a rather valid concept in psychology. Besides many 
other definitions, Morris [1] gives: 

“Intelligence [… is …] a general term encompassing various mental abilities, including the 
ability to remember and use what one has learned, in order to solve problems, adapt to new 
situations, and understand and manipulate one’s environment.” [1] 

Nowadays intelligence or cognition is no longer exclusively considered by psychology, but is subject to the 
interdisciplinary field of “cognitive science”, which is influenced by philosophy, psychology, neuroscience, 
linguistics, anthropology, and, of course, by computer science and information technology. In this 
enumeration the last discipline seems to be of some particular interest, because it facilitates to prove the 
validity of theories by modelling and simulation. New concepts emerging in the field of Artificial Intelligence 
(AI), a field of computer science that attempts to develop intelligently behaving machines [Anderson, 2000], 
influenced the cognitive psychology, and vice versa [2]. 

Many approaches dedicate themselves to the exploration of the underlying processing structure, as opposed to 
the principles of behaviourism, which was a rather strong trend in the early 20th century psychology,  
only being concerned with the externally observable behaviour of a human. 

Figure 5-18 depicts the different approaches, the one of the behaviourism (top), and the alternative modelling 
view considering the internal processing (bottom). In both cases, the information processing paradigm  
(input  processing  output) is appropriate to characterise the phenotype of the situation. The behaviourism 
searches for the input-output mapping of human behaviour, no matter how it will be implemented.  
Other modelling approaches focus on the description of the underlying processes, in order to expose the 
observed behaviour. In the subsequent few sections a brief overview will be given over approaches to the 
modelling of the processing mechanisms of human cognition. Behaviour, in turn, can be utilised in order to 
validate related models. 

Environment Operator

Processing

Environment Operator

Behaviour

 

Figure 5-18: Modelling Behaviour or Processing. 

5.4.1 Model of Human Performance 
In order to open the window to the development of human-like performance features in terms of cognitive 
automation, the very well accepted model of human performance levels by Jens Rasmussen [3] will be 

?
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consulted, to begin with. The simplicity and intelligibility made this model, originally having its seeds in 
ergonomics research, quite popular in the circles of cognitive psychologists as well as amongst engineers.  
In fact, Rasmussen’s model became the probably most common psychological scheme within the entire 
engineering community. 

Without going into too much detail here (for a most detailed discussion refer to [3] and [26]), the model 
distinguishes between three levels of human performance, the skill-based, the rule-based, and the knowledge-
based behaviour (see Figure 5-19). On the skill-based level highly automated control tasks will be performed, 
without any mental effort or consciousness. Typical for this level is the continuous control of the body in 
three-dimensional space and time. Most of this performance is carried out in feedforward control mode by 
pre-programming of stored sensor-motor patterns on the basis of task specific features. Typical behaviour on 
this level, like tracking a road, will be assembled by running a sequence of parameterised templates with some 
feedback control ratio for precision enhancement. 
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Figure 5-19: Rasmussen’s Model of Human Operator’s Performance Levels Linked to Environment. 

On the rule-based level most of the everyday conscious action that we perform takes place in a strict 
feedforward control manner. Here, humans follow pre-recorded scripts and procedures in order to activate the 
appropriate sensori-motor patterns on the basis of the presence of clearly recognised objects characterising the 
prevailing situation. With training formerly rule-based performance tends to be dropped to the skill-based 
level. Rule-based performance is goal-oriented, although goals are not explicit, but encoded in the pre-
conditions of the applicable rules. 

The knowledge-based level will be entered in situations, where there are no applicable rules available in order 
to recognise objects or to determine the selection of action. This is the case when the situation requires the 
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preoccupation with a non-pre-defined problem. In this case general concepts have to be consulted in order to 
identify the situation, i.e., find similar or somehow related situations in previous experience. Goals derived 
from overall aims explicitly direct the tasking. Planning, i.e., problem-solving will be deployed in order to 
generate new scripts or procedures, which will be executed on the rule-based level. In general, problem-
solving can be considered as a highly versatile process, incorporating strategies such as difference reduction 
and means-ends analysis [17] as well as search in problem space [4]. So-called mental models will be the 
knowledge basis for the highest performance level [3]. 

Although it is so common to the engineering community, because of its apparent use of clear functional 
blocks and their interrelations, Rasmussen’s model deserves some interpretation from an information 
technology point of view. One reason for this is the improper handling of knowledge in the model. Most of the 
boxes represent a dedicated function or processing step (e.g., ‘recognition’, ‘planning’). Only two particular 
boxes (i.e., ‘stored rules for tasks’ and ‘sensori-motor patterns’) represent knowledge, without having their 
individual functions specified. And finally, only one functional block (i.e., ‘decision of task’) makes use of an 
explicit knowledge basis (‘goals’). From an information technology standpoint it would be desirable to modify 
the model according to the following guidelines, at least for a first step of advancement: 

• Use boxes for functions or processing steps; 

• Label the knowledge which is made use of in each box; and 

• Label all inputs and outputs of the functional blocks. 

The detailed discussion of this issue shall be the matter of forthcoming publications. 

5.4.2 Modelling Approaches for Intelligent Machine Behaviour 
As discussed above, the human performance can be decomposed in several high level cognitive functions, 
which rely upon certain a-priori knowledge. Besides the task-related a-priori knowledge, there are 
mechanisms necessary in order to process this knowledge. Highly related with these mechanisms is the form 
of representation of this knowledge. In parallel to the development of psychological performance and 
behaviour models as briefly discussed in the previous section there takes place the development of 
technological approaches to intelligent machine behaviour, each of which influencing and fertilising one 
another. 

From a very global standpoint there can be identified two fundamentally different approaches, one strongly 
influenced by the idea of mimicking the human implementation of cognition in the brain (i.e., connectionism, 
artificial neural networks, sub-symbolic AI) [5], and the other being based upon models taken from 
information technology (i.e., symbolism, Artificial Intelligence) [2].  

Besides those two main streams, early human factors research offered modelling approaches on the basis of 
control theory [18]. 

Figure 5-20 shows the principal approach of this class of approaches, modelling human behaviour by means 
of transfer functions. Typically, there were made a couple of structural assumptions, such as reaction time and 
neuromotor delay as inherent parameters and gain and anticipation as task-adaptable parameters. On the basis 
of such model structure quite successful parameter identifications could be performed, typically limited to 
various sensori-motor control tasks. 
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Figure 5-20: Model of Human Behaviour Motivated by Control Theory (i.e., Transfer Function). 

Coming back to the aforementioned antithetic approaches of connectionism and symbolism one major 
difference can be identified in the way of knowledge representation. In the connectionism there is no 
separation existing between knowledge and its processing. Neither is knowledge in any way explicit,  
but spread over the weights of the connections between simple but numerous processing units (neurons).  
Each single weight provides a contribution to the knowledge persistent to the model without a particular 
allocation of meaning. The entirety of weights represents the entirety of a-priory knowledge. Many models 
provide learning mechanisms, either in supervised or unsupervised learning mode. 

Symbolism, on the other hand, utilises explicit, meaningful symbols in order to handle knowledge. Processing 
architectures are derived from simple information processing paradigms, as depicted in Figure 5-21. 
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Figure 5-21: Model of Human Processing Motivated by Information Technology. 

While the processor is almost independent from the task, the functionality is encoded in the knowledge 
persistent to the memory. The interface to the external world build dedicated receptors and effectors.  
The probably most famous, classical model of this kind is the so-called CMN-model [6] as shown in  
Figure 5-22. 
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Figure 5-22: The Model Human Processor Adapted from CMN-Model. 
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The CMN-model in particular points out the assumed structure of the memory of the human and some 
performance features and limitations of its building blocks. The 7-chunk capacity limit of the working 
memory is probably one of the most acquainted proposition in this context. As principal concept of processing 
the so-called recognise-act cycle (RAC) (see Figure 5-23) is proposed. 
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Figure 5-23: The Recognise-Act Cycle. 

To characterise the activity of the cognitive processor, [6] state: 

On each cycle, the contents of Working Memory initiate associatively-linked actions in the Long-
Term Memory (“recognize”), which in turn modify the contents of Working Memory (“act”), 
setting the stage of the next cycle. [6] 

The interface to the environment is through the working memory.  

The so-called production systems (expert systems) predominantly follow the processing approach of the 
recognise-act cycle using mainly IF-THEN rules as knowledge representation form for heuristics and “rules of 
thumb”. Figure 5-24 shows the main building blocks of such a rule-based system (i.e., production system).  
The knowledge is stored in the rule base, the long-term memory of the architecture. Based upon the short-term 
(i.e., working) memory contents (i.e., internal states plus input from and output to the environment) according 
to their pre-conditions rules from the rule base will be selected as candidates for execution. After the solution 
of conflicts (in the case of, e.g., more than on applicable rules) the rule will be “fired”, i.e., the post-condition 
of the rule will be executed in order to modify the content of the short-term memory, either initiating a 
succeeding recognise-act cycle base on internal state changes, or evoking an action at the output. 
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Figure 5-24: Architecture of a Rule-Based System (i.e., Production System). 
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Besides these very traditional approaches, predominantly relying on the use of rules as form of knowledge 
representation, many other kinds of knowledge representations evolved in the era of GOFAI (“Good-Old-
Fashioned Artificial Intelligence”), most of which linked to symbolist approaches on one or the other way, 
e.g., semantic networks [19], conceptual dependency [7], frames/schemata [20], scripts [8], just to name the 
classical ones. 

Besides these “classical” ones there are at least two more recent approaches important to be mentioned here, 
both of which being symbolic cognitive architectures meant to model intelligent performance: 

• ACT-R [9] is used to model different aspects of human cognitive behaviour, i.e., to implement 
human-like behaviour. ACT-R has its starting point in creating a computational theory of human 
memory. It combines predominantly symbolic representations with sub-symbolic mechanisms, 
mainly to model human performance aspects such as the limited retrievability of knowledge. 

• SOAR [10,4] is used to model an agent’s intelligent capabilities, i.e., to implement rational behaviour. 
SOAR has its roots in the attempt to understand the methodological and structural pre-requisites of 
human problem-solving and decision-making. Concerning knowledge representations, SOAR is a 
rule-based, i.e., a production system. 

While the aforementioned architectures pair a still strong focus on knowledge representation with architectural 
aspects of cognition, some concurrent approaches capitalise upon mostly architectural views. Some of the 
most prominent approaches shall be brought up here: 

• BDI (Belief-Desire-Intent)-Agents [11]: Agents are software constructs situated in a certain 
environment and interacting with it autonomously in order to achieve specific individual objectives. 
Applications are widely spread over various domains from data management over user interfaces and 
computer mediated collaboration to robotics. The BDI architecture suggests the usage of mental 
attitudes representing the informational (belief), the motivational (desire) and the deliberative (intent) 
state of the agent. 

• RCS (Real-time Control System) [12]: RCS is a reference model architecture, suitable for real-time 
control problem domains, and therefore closely related to robotics. It focuses on intelligent control 
that adapts to uncertain and unstructured operating environments. The architecture provides a  
top-down hierarchical composition of processing nodes incorporating the cognitive functions of 
sensory processing, world modelling, value judgement and behaviour generation. 

• Subsumption Architecture [13], representing the field of behaviour-based robotics, almost fully 
dismisses the notion of a mental world model. Instead, this architecture is strongly behaviour 
oriented, i.e., focussing on direct perception-action mappings facilitated by close couplings between 
sensors and actuators. More complex behaviours are assumed to emerge from simpler ones in a 
bottom-up manner. Symbolic representations are not part of this architecture. 

As this very brief, and by no means complete, overview of modelling approaches for intelligent machine 
behaviour indicates, the research focus over the last three decades has been shifted from mostly method 
oriented approaches, e.g., how to represent knowledge, to somewhat more architecture focussed approaches. 

When it shall come down to a systems engineering implementation of intelligent machinery, both aspects  
yet are of their particular importance, and therefore should be considered in a well balanced manner.  
The following sub-sections introduce the concept of the Cognitive Process [21,22,14], which comprises a 
theory based on cognitive psychology with a knowledge-based architecture. 
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5.4.3 The Cognitive Process as Approach to Cognitive Automation 
Coming back to the aim of a co-operative structure of a human-machine system (as depicted in Figure 5-12), 
the notion of cognitive automation (as introduced in the Sections 5.3.2. ff.), and the technological challenge of 
providing cognitive capabilities to an Artificial Cognitive Unit (ACU) (as formulated in Section 5.3.3),  
we now want to take the findings on cognition (Section 5.4) into consideration in order to develop a theory-
based architecture for intelligent machine behaviour. Findings from cognitive psychology and artificial 
intelligence shall be taken into consideration likewise. 

The concept of a piece of automation being a team-player in a mixed human-machine team, or even a machine 
taking over responsibility for work objectives to a large extent, promotes the approach of deriving required 
machine functions from models of human performance. In Section 5.4.1 Rasmussen’s model has been 
introduced. 

When we look at conventional automation as discussed in the Section 5.2.2 and 5.3.1, in particular in the 
avionics domain, it mainly acts on a level which might be compared with the skill-based human performance 
level (e.g., flight control systems, autopilot systems). Some functionalities might be attributed to the rule-
based (e.g., traffic collision avoidance systems) and few on the knowledge-based level (e.g., mission planning 
support in flight management systems).  

On the other hand, not many automation systems can be identified, providing an understanding of the current 
situation in terms of recognition and identification, or considering goals, which are essential for the decision 
of what to do next in an unknown situation, as already discussed in Section 5.3.1. 

In contrast to the conventional approach, cognitive automation aims for rationality in a human-like 
performance manner, without modelling typical human’s shortcomings. Thus, all functions of Rasmussen’s 
model have to be covered, including those already incorporated in conventional automation [14]. Figure 5-25 
shows the main focus area for future developments aiming at cognitive automation, namely the 
implementation of a comprehensive situation understanding and goal-driven decision-making, as high level 
cognitive capabilities. 
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Figure 5-25: Conventional and Cognitive Automation Explained  
by Rasmussen’s Model of Human Performance. 

In order to achieve a system engineering framework, the main idea of Rasmussen’s model, namely rule- and 
knowledge-based performance, is mapped into the so-called Cognitive Process (CP). The CP is an approach  
to modelling human information processing, which is suitable for providing human-like rationality [14,15].  
As it is compatible with human cognition, and the generated behaviour is driven by goals, which are 
represented explicitly, it is well suited for the development of a cognitive system, which is part of a team 
consisting of artificial and/or human team mates. 

Figure 5-26 shows the CP consisting of the body (inner part) and the transformers (outer extremities).  
The body contains all knowledge, which is available for the CP to generate behaviour. There are two kinds of 
knowledge: the ‘a-priori knowledge’, which is given to the CP by the developer of an application during the 
design process and which specifies the behaviour of the CP, and the ‘situational knowledge’, which is created 
at run time by the CP itself by using information from the environment and the a-priori knowledge.  
The functional units effectively processing knowledge are the above-mentioned transformers, which read 
input data in mainly one area of the situational knowledge, use a-priori knowledge to process the input data, 
and write output data to a designated area of the situational knowledge. 
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Figure 5-26: The Cognitive Process. 

The following steps are performed by the CP in order to generate behaviour: 

• Information about the current state of the environment (input data) is acquired via the input interface. 
In this context, the environment includes other objects in the physical world, e.g., another UAV or an 
obstacle, as well as the underlying vehicle of the CP. Therefore, the input data may for instance 
contain information about the current autopilot mode or pre-processed sensor information. 

• The input data are interpreted to obtain an understanding of the external world (belief).  
The interpretation uses environment models, which are concepts of elements and relations that might 
be part of the environment, to build this internal representation. 

• Based on the belief, it is determined, which of the desires (potential goals) are to be pursued in the 
current situation. These abstract desires are instantiated to active goals describing the state of the 
environment, which the CP intends to achieve. 

• Planning determines the steps, i.e., situation changes, which are necessary to alter the current state of 
the environment in a way that the desired state is achieved. For this planning step, models of action 
alternatives of the CP are used. 

• Instruction models are then needed to schedule the steps required to execute the plan, resulting in 
instructions. 

• These instructions are finally put into effect by the appropriate effectors of the host vehicle.  
The resulting actions affect the environment, i.e., modify the physical world. 

These functional units represent an application-independent inference mechanism, which processes 
application-specific knowledge. This knowledge-based design approach is of great advantage when 
implementing the CP: The inference mechanism has to be implemented only once, and can then be used for 
different applications. 
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It is desirable to reuse not only the inference mechanism, but also knowledge in different applications. For this 
purpose, a-priori knowledge has to be unitised in so-called ‘packages’, each of which represents a certain 
capability. As indicated in Figure 5-27, each package (depicted as horizontal layer) implements a capability 
which is designed according to the blueprint of the CP. Several packages together form the complete system. 
They are linked by dedicated joints in the a-priori knowledge and by the use of common situational 
knowledge. When looking vertically on the packages, a uniform structure of the a-priori knowledge and its 
order of usage in terms of processing steps according to the transformers of the CP can be recognised. 
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Figure 5-27: Representing Multiple Capabilities on Basis of the Cognitive Process. 
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5.5 COGNITIVE SYSTEMS ARCHITECTURE – REALISATION ASPECTS 

This section is supposed to point out a perspective of how to implement an Artificial Cognitive unit (ACU)  
on the basis of the proposed theory. Figure 5-28 depicts what has been achieved so far, as a review of the 
previous sections. The starting point is the human operator as operating element in a work system. In a first 
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step we model human performance in terms of high level cognitive functions. The analysis of the typical work 
share in work systems reveals that there are particular shortcomings in terms of these high level cognitive 
functions on the machine side, namely in the domain of situation understanding and goal-driven behaviour.  
In order to achieve this capability on the machine side the Cognitive Process is proposed as underlying theory 
derived from useful findings in cognitive psychology and artificial intelligence research, likewise. 
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Figure 5-28: Method of Cognitive Systems’ Development. 

As a next step of the development of a cognitive system according to the approach of cognitive automation, 
the realisation of an Artificial Cognitive Unit (ACU) has to be accomplished. In the succession of this section 
an engineering framework for the development of such an ACU will be described: The Cognitive System 
Architecture (COSA). 

COSA offers a framework to implement applications according to the theory of the Cognitive Process.  
It provides an inference mechanism and various means, which make it possible for the developer of an 
application to use concepts like ‘belief’, ‘goal’ and ‘plan’ rather than a programming paradigm based on a 
functional decomposition of an application [1]. 

COSA is composed of four building blocks (cf. Figure 5-29). 

• The kernel implements the theory of the CP and does not contain any application-dependent 
information. Its only task is to generate behaviour from knowledge. In the current implementation, it 
is based on SOAR [Laird et al., 1987], which is a general rule-based architecture for developing 
systems that exhibit intelligent behaviour, as described earlier in this chapter. The CP-Library 
structures the situational knowledge according to the theory of the Cognitive Process and coordinates 
the performance of the transformers (interpretation, goal determination, planning, and plan 
realisation, cf. Figure 5-26). 

• The application is formed by several COSA-compliant application components, which correspond to 
packages (see Figure 5-27). The components provide the a-priori knowledge and may also contain 
servers with interfaces to the environment or for external calculations.  
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• The front end provides tools for the developer of an application, which help him to model the 
knowledge for the application. One part of the front end is CPL (Cognitive Programming Language), 
which provides a programming support to the implementation of the above-mentioned mental notions 
‘belief’, ‘goal’, and ‘plan’ as concepts for knowledge modelling. The CPL code, which represents the 
knowledge on a rather high abstraction level, is compiled into a code representation understood by the 
kernel, i.e., SOAR in the current implementation. 

• Finally, the distribution layer is responsible for the communication among the modules of COSA.  
It ensures that components and modules can run on different computers in a network. 
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Figure 5-29: COSA – Cognitive System Architecture. 
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5.6 APPLIED SYSTEM APPROACHES 

The previous sections provided a rather general concept of how to approach artificial cognition and  
co-operative automation, which represents the current state of the art achieved at the Institute of System 
Dynamics and Flight Mechanics at the Munich University of the German Armed Forces, at least from a 
theoretical standpoint. On the practical side this achievement could be attained during the course of several 
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experimental programmes in the field over the recent 15 years. Most of the works were well documented by 
multiple publications and internationally well recognised, e.g., [6] reporting the results of the flight trials of 
the worlds first comprehensive knowledge-based assistant system for flight-deck crews, CASSY (Cockpit 
Assistant System). In the late nineties followed CAMA (Crew Assistant Military Aircraft) as a prototype 
system in the military transport domain, e.g., [7] discussing the system architecture, [Schulte & Stütz, 1998] 
reporting on the successful simulator validation of the system, and [46] pointing out the successful flight tests 
that followed. 

A detailed discussion of the achievements of the working group around Reiner Onken would go beyond the 
scope of this chapter. Instead of doing that, the rest of this chapter shall be dedicated to a broadening of the 
view by bringing up three perspectives from other research groups. The first contribution (Sub-section 5.6.1) 
is provided by Mike Chamberlin (UK) dealing with the issue of Artificial Intelligence from a methods’ point 
of view. This treatment perfectly supplements the findings of Section 5.4, especially of Sub-section 5.4.2, 
which were pretty much focussed on a unitary approach. Sub-section 5.6.1 will give a nice overview and 
evaluation of further approaches. 

Common to all attempts to computational intelligence of whatsoever kind is the (open) question to the 
acquisition of the necessary knowledge and it’s adequate representation. In Sub-section 5.6.2 Jack Edwards 
(Canada) tackled the problem of intelligent, adaptive help system design mainly under the consideration a 
knowledge design and engineering methodology that combines elements of the CommonKADS and IDEF 
methods, Explicit Models Design and Perceptual Control Theory. 

Finally, Sub-section 5.6.3 by Mike Waters and Robert Taylor (UK) opens the perspective for the domain of 
unmanned underwater vehicles as an application domain. Their model of autonomous decision making renews 
the idea of cognitive automation from a different perspective, rounding out the picture. 

5.6.1 Artificial Intelligence (AI) Methods Perspective 
In order for unmanned air vehicles to fulfil their envisaged enhanced roles in the future integrated battlespace, 
there is an unprecedented requirement for flexible and autonomous operation, representing a massive leap in 
capability compared to that of today’s systems. 

This section critically examines the notions of automation and autonomy on UAV and UCAV platforms, and 
operator decision support; in the contexts of current and envisaged platforms, roles, responsibilities and 
missions. The relative merits and maturity of AI techniques and technologies are studied and their 
applicability to providing elements of autonomous behaviour in UAVs and UCAVs are considered in light of 
these; illustrating how semi- and fully-autonomous UAVs, and operator decision support, can boost 
flexibility, survivability and mission effectiveness of UAVs/UCAVs, augmenting and enhancing the 
capabilities of the future warfighter. 

5.6.1.1 Introduction to AI Methods 

It has long been recognised, and more recently demonstrated through deployments in the Gulf, Bosnia and 
Afghanistan, that UAVs have significant potential to enhance a force’s ability to project combat power.  
Their range, persistence, altitude and potential for cost and manpower savings make UAVs an ideal candidate 
for the dull, dirty and dangerous missions of the future; augmenting, replacing or even surpassing the 
capabilities of manned aircraft. 
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Removing the human from the aircraft’s cockpit enables more efficient and cost-effective platform designs, 
albeit with the trade off that the operator is now further separated from the action, with a commensurate 
possibility for loss of situational awareness. With the operator’s role needing to evolve from a piloting to a 
supervisory capacity, treating many UAVs as one system in order to achieve mission objectives, there are 
serious implications for cognitive workload [1]. 

5.6.1.2 UAV/UCAV Autonomy Requirements 

Small-scale UAVs such as Micro-UAVs (MAVs), are intended to be deployed by ground forces for short-
range surveillance. As such, MAVs are supposed to be man-portable and expendable, hence a fully-
autonomous architecture is not required. Much larger UCAV/UAV platforms, although originally intended to 
be expendable, cannot afford this luxury as development and operating costs continue to spiral upwards.  
With the human operator removed from the vehicle and reduced to a supervisory role, rather than being in full 
control, a significant automatic and autonomous element needs to be present for the UCAV to achieve any 
level of survivability and capability at all above that of a cruise missile. 

For a UCAV platform to be successful, it has to rely on achievable technologies, and interactions between 
component technologies must be carefully managed. Development is concerned with trade-offs between 
platform properties: individual components are themselves sufficiently advanced already. Constructing the 
airframe is relatively straightforward; achieving desired levels of survivability and mission effectiveness are 
the major challenges [2]. How processes are integrated with the platform and infrastructures (e.g., datalinks)  
is the key. 

Currently, UAVs such as X-45A are capable of taking off and landing automatically, and following waypoints 
to a target. They can relay surveillance data to a controller for target acquisition and designation, and deploy 
ordnance to destroy a soft target. 

The main types of mission that are likely to be undertaken by a UAV or UCAV are listed in Table 5-1 [3]: 

Table 5-1: Likely UAV or UCAV Mission Types 

SEAD (Suppression of Enemy Air Defences) Attacking air defences, e.g., SAM sites; plus escort and 
sweep roles 

Strike Attacking pre-defined targets; plus escort and sweep roles 

TCT (Time Critical Targeting) Attacking targets within a narrow window of opportunity; 
may involve long loitering times 

Maritime specific AEW, ASW, AsuW tasks; organic to naval vessel or task 
group 

ISTAR (Intelligence, Surveillance, Target 
Acquisition and Reconnaissance) 

Functional requirements including, e.g.: Battlefield 
Surveillance and Reconnaissance; Target Detection, 
Location and Identification; BDI/BDA 

Communications Relay Extend LOS communications, e.g., UHF, Link 16 
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An autonomous UAV/UCAV would have to undertake some of the following actions during each sortie:  

• System monitoring. 

• Airmanship tasks, e.g., fuel states, aircraft safety. 

• Health monitoring/diagnostics, leading to mission re-planning: 
• Work within battlespace infrastructure, i.e., datalinks, communications (manage these); and 
• Fault and damage tolerant control of the aircraft, i.e., it has to fly safely and predictably, work 

around minor faults, and carry out appropriate procedures in the event of major failures. 

• Takeoff: 
• Interoperability with ATC commands, and normal aircraft handling patterns and procedures is 

vital, even more so for UCAV-N operating from an aircraft carrier (even down to the envisaged 
level of the air vehicle responding to voice commands from ATC). 

• Formation: 
• A need to operate with other manned and unmanned aircraft, in normal airspace, and as part of a 

package. 

•  Ingress / Routing to target: 
• Route to pre-defined target; 
• Comply with airspace regulations; and 
• Avoid known and pop-up threats, dynamically altering flight or even mission plans if necessary 

with SA gained through maintenance of RASP. 

• Carry out mission: 
• Compliance with Air Tasking Orders (ATO), SPINS; 
• ROE, Laws of Armed Conflict; 
• Detect, Identify and Acquire Targets- a real-time process for TCT; 
• Weapons release (SEAD, Strike, TCT); and 
• Battle Damage Investigation / Assessment. 

• Egress: 
• As ingress; and 
• Added complications for Strike, SEAD, i.e., package re-formation and delousing. 

• Landing: 
• Interoperate with airbase landing/recovery patterns and procedures. 

5.6.1.3 Applicability of AI Techniques to Mission Requirements 

Various AI methods were examined in order to determine their relative merits and particular ‘skills’,  
when applied to the types of activity necessary for the autonomous mission tasks identified above  
(see Table 5-2). 
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Table 5-2: Relative Merits of AI Techniques when Applied to UAV Mission Management Tasks 

 Fuzzy Systems GAs KBS NN CBR Hybrid systems MPS1 

Scheduling/planning M M M M Y Y Y 

Decision support Y N Y N M Y  

Diagnostics Y N Y M Y Y  

Risk analysis  Y Y M Y Y Y  

Data analysis  M Y M Y M Y  

Monitoring Y N Y Y M Y  

Optimisation M M N Y N Y  

Interpretation Y N Y M M Y  

Classification Y M Y Y M Y  

Control of systems Y M N Y N Y  
1  Mission Planning Systems. 

Legend 

Y Yes – highly applicable 

M Maybe – slightly applicable 

N No – inapplicable 
 

The following table (Table 5-3) compares the relative merits of these AI techniques to the mission tasks 
above, giving the tasks fully autonomous UAV or UCAV would have to undertake, and which AI method,  
or combination of methods would best be suited. These are then linked to various processes (outlined in 
Section 4 below, and see [4] for more details) forming an example UAV/UCAV architecture (based on the 
Sharp control and decisional architecture for autonomous vehicles [5]). The result is the identification of 
which technique or combination of techniques is best suited to each process. 
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Table 5-3: Recommended AI Techniques for Identified UAV Autonomy Requirements, and Mapping to Processes 

Action Capability Mission Type AI task for Autonomous UCAV AI Technique Process 
Routing to pre-defined target Route/Mission Planning, Risk Analysis, Optimisation MPS Route Planner 
Route re-planning Mission Planning MPS Route Planner 

Autonomous 
Navigation 

Mission re-planning 

All 

Mission Planning Hybrid (KBS & MPS) Mission Manager 
RASP from own sensor / datalink  SA Monitoring, Interpretation, Classification, Data Analysis, 

Optimisation 
KBS Situational Awareness, 

Mission Manager Surveillance 
Mission/payload sensor management 

All 

Scheduling, Control, Data Analysis Fuzzy  Mission Manager,  
Situational Awareness 

Threat Detection KBS Mission Manager 
Threat Identification 

Monitoring, Interpretation, Classification, 
Risk Analysis KBS Mission Manager Threat 

avoidance Threat avoidance through Route/Mission re-
planning 

All 

Control, Route/Mission Planning Hybrid (KBS / Fuzzy & 
MPS) 

Mission Manager,  
Route Planner 

Target Detection Monitoring, Interpretation, Classification, Risk Analysis KBS Mission Manager 
Real-time Target Identification Classification, Data Analysis Hybrid (KBS / Fuzzy & 

NN) 
Mission Manager 

Target Acquisition Classification Hybrid (KBS / Fuzzy & 
NN) 

Mission Manager 

Weapons release Control NN Mission Manager,  
Flight Management 

Destructive 

Battle Damage Assessment 

SEAD, Strike, 
TCT 

Interpretation, Classification Hybrid (KBS / Fuzzy & 
NN) 

Mission Manager 

Communications to command centre (maintain 
datalinks, etc.) 

Data Analysis, Monitoring Hybrid (NN & Fuzzy) Mission Manager,  
Situational Awareness 

Integration into battlespace infrastructure 

All, esp. 
Comms Relay, 
ISTAR, TCT Data Analysis KBS Mission Manager,  

Situational Awareness 
Fly as part of a package SEAD, Strike Optimisation, Control, Risk Analysis Hybrid (KBS / Fuzzy & 

NN) 
Mission Manager, 
Situational Awareness, 
Flight Management 

Interoperate with Airbase / carrier patterns and 
procedures, ATC 

All, esp. 
Maritime 

Control, Planning, Interpretation, Data Analysis Hybrid (KBS / Fuzzy & 
NN) 

Mission Manager, 
Flight Management, 
Situational Awareness 

Interoperability 

Interoperate with other manned/unmanned 
platforms 

All Control Hybrid (KBS & NN) Mission Manager, 
Flight Management, 
Situational Awareness 

Fault/damage tolerant control, i.e., flight Control, Risk Analysis, Data Analysis, Diagnostics Hybrid (NN & Fuzzy) Flight Management 
Health Monitoring/diagnostics 

All 
Monitoring, Classification, Diagnostics CBR Health Monitor 

D/NAW capability (aircraft & sensors) ISTAR Interpretation (sensor data) NN Flight Management, 
Situational Awareness 

Airmanship, e.g., fuel states Monitoring, Diagnostics KBS, CBR Airmanship 

System 

Safety & Emergency procedures 
All 

Monitoring, Risk Analysis, Control KBS Airmanship 
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5.6.1.4 Recommended Applications of AI Methods 

The analysis in Table 5-3 shows that no single AI technique is appropriate for all areas of autonomous 
operation. The requirements for all tasks are so diverse that one method cannot be a panacea. A hybrid system 
would offer the best solution, so that a particular technique that excels in one area can be applied to one 
subsystem, providing input into other subsystems functioning through one or more different techniques. 

By comparing the techniques suited to each task (which were outlined in the section above), and the process 
that contains each task, it becomes apparent (in Table 5-2) which technique, or combination of techniques is 
most suited to each process (see Figure 5-30 for a diagrammatic representation). 

Airmanship  KBS Health monitoring  CBRFlight Management  
Hybrid system 

 
Fuzzy system  logical control, fault 
tolerance 
NN  flight management, platform 
control, weapons release 

Route planner  MPS Situational Awareness  KBS
Fused sensor data 

Sensor control 

Mission management executive  Hybrid system 
(KBS / Fuzzy system management) 

 
Initiate Replanning – based on SA, Airmanship, Health Monitoring, Control 
ensure survivability, mission success; 
 
Maintaining SA / sensor coverage – sensor management, comms…; 
 
Threat / target extraction from RASP; 
 
Identify & Acquire targets – goals, ROE…; 

 

Figure 5-30: Recommended Applications of AI Method. 

The Flight Management process would be best as a hybrid system. A neural network could control the actual 
platform’s flight characteristics, managed by a fuzzy controller receiving instructions from the Mission 
Manager. This might include neural network for machine vision purposes when the aircraft is operating on the 
ground (e.g., taxiing around obstacles). 

A Case-Based Reasoning system should manage the Health Monitoring process. The present state of the 
platform would be compared to cases representing nominal operation, and differences used to diagnose 
failures, and possible remedies, in real time, from a case library. 



ARTIFICIAL COGNITION AND CO-OPERATIVE AUTOMATION 

5 - 42 RTO-TR-HFM-078 

 

 

The Airmanship process would be a Knowledge Based System. This would continually monitor the state of 
fuel levels, weapons and sensors, and the position of the aircraft with respect to flight levels, safe altitudes, 
airspace restrictions and so on, advising the mission manager if plans are feasible given current fuel levels,  
or require re-planning. 

Situational Awareness would be provided by another knowledge-based system. This would build a RASP 
from correlation and fused sensor, datalink, and other information, abstracting tracks, and advising the 
mission manager on potential threats and targets. 

A mission planning system would be best for the Route Planning process. The route planner would take the 
current mission objective and abstracted RASP from the mission manager and; with knowledge of airspace 
regulations, the platform’s capabilities (from airmanship and health monitoring processes), knowledge of the 
terrain for masking purposes, and ROE; produce a flight plan. 

The Mission Manager is in overall control of the aircraft. This would be use a hybrid technique with inputs 
from all the other processes feeding a KBS or fuzzy system. A fuzzy system could cope better with uncertain 
information, however this might be undesirable if information is too vague. The mission manager abstracts 
information from the SA process into targets and threats, based on mission objectives, ROE and other 
pertinent information, for the route planner, and passes resulting flight plans to the control process  
Any changes to the environment, ROE, mission objectives, or RASP may result in re-planning the mission,  
as could advice from the airmanship or health monitoring processes.  

It is important to remember also that a human will still be in the loop somewhere, most likely monitoring the 
UAV/UCAV as part of a system of systems from a ground station, and possibly taking tactical decisions about 
the overall mission plan. A soldier on the ground may request surveillance imagery, or even Close Air 
Support. The overall requirement is for flexibility and network-enabledness as part of the future integrated 
battlespace. 

5.6.1.5 Conclusions on AI Methods 

This section has examined the spectrum of available UAV platforms and underpinning technologies in the 
context of potential scenarios in order to discuss the relative merits of different Ai techniques to improve 
mission effectiveness. 

Of necessity, at this period, most effort has been expended in platform configuration and power plants with 
bandwidth limitations initially appearing as the first barrier to more widespread application, after the need for 
greater systems integration. 

A trade off then emerges of bandwidth requirements for transmission against onboard processing for greater 
autonomy, and so reducing reliance on transmitted data. 

Autonomy is often seen as a panacea to address the bandwidth problem with AI techniques in the vanguard 
for achieving this state, although reference to the maturity of different AI techniques quickly refocuses 
attention on candidate approaches for down selection for any practical demonstrator. 

Autonomy and automation are not synonymous, and examples are offered in the report that illustrate the 
salient differences and the associated impact on elements of any system. 
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Tabulation of the strengths and weaknesses of different AI techniques indicate the potential application area to 
best exploit the relevant merits and maturity levels of each technique. 

Contrary to widespread beliefs held by non-specialists, this study indicated only limited potential for neural 
networks, genetic algorithms and fuzzy systems in UAVs, except as a component of more comprehensive 
hybrid solutions. Fuzzy systems and neural networks were seen as predominantly of use in control and 
classification applications. 

Knowledge-based systems were seen as essential for monitoring, interpretation and data analysis, that is,  
the less autonomous aspects of missions such as diagnostics and decision support. 

The application of specific AI techniques was found to be largely dependent on the level of autonomy 
envisaged. Higher levels of autonomy suggested more hybrid systems to exploit the complementary 
capabilities of different AI technologies. 

From the systematic consideration of the relative merits of different AI approaches for each UCAV mission 
requirement, it became possible to identify which AI technique, or combination of techniques are best suited 
to each element of the system. 

Conversely, if different or varying levels of autonomy are considered, appropriate AI techniques can be 
identified and recommended to satisfy separate elements of the UCAV/UAV system. 

5.6.1.6 Recommendations on AI Methods 

This study has outlined the relevance and maturity of AI techniques and technologies to address the issue of 
autonomy in future UAVs and UCAVs. As a result of the process of breaking down missions and roles to 
address the required functionality it became evident that no single technique was a panacea for complete 
platform autonomy, however certain methods can be applied to particular areas, which might be self-
contained should the goal of complete autonomy be judged unobtainable or undesirable. 

The most attainable solution would involve a complex hybrid architecture, utilising several methods to 
address particular areas, in self-contained elements or as a coherent whole. If a fully or even partially 
autonomous air vehicle is the goal, then much further development will be required to refine potential 
architectures in light of implementation issues.  

On- and off-board diagnostics and health monitoring could be achieved by a case-based reasoner.  
A knowledge-based system could address airmanship tasks. Autonomous flight management might be 
accomplished with a hybrid system comprised of a controlling fuzzy system fed by a neural network.  
A knowledge-based system is applicable to managing situational awareness, with dynamic route planning an 
re-planning undertaken by a mission planning system. 

Finally, a hybrid system could form the mission management executive, based on a KBS or fuzzy expert 
system, fed by inputs from the other elements. 

There is a vital need to consider more closely the actual architecture of a proposed fully-autonomous UAV in 
order to gain a better understanding of the particular systems that are likely to be implemented. Then, and only 
then can a deeper look can be taken at which AI techniques are most applicable to each subsystem; this report 
identifies the areas that best suit the relative ‘skills’ of certain AI methods. 
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Any realistic recommendation would be time and funding dependent. Shorter timescales and minimal funding 
suggest applications limited to diagnostic advisors, whilst longer timescales and more generous funding make 
possible hybrid AI solutions for applications requiring full autonomy. 

AI techniques could also be more confidently employed in areas where less capability is required. This report 
has identified some of the many issues influencing the path to full autonomy, demonstrating the magnitude 
and complexity of the obstacles to be overcome. An interim solution could employ intelligent tools to aid the 
operators of UAVs and UCAVs, both ground and air controlled, to enable them to utilise many more vehicles 
than at present, whilst working in a supervisory battle management role, as opposed to a pilot role.  
AI technologies employed in operator decision support, and on- and off-board diagnostics systems could go a 
long way towards meeting these requirements. 
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5.6.2 Intelligent, Adaptive Help System Design 

This contribution describes a comprehensive approach to developing decision support systems for providing 
intelligent, adaptive aiding to users. The approach is guided by the use of a knowledge design and engineering 
methodology that combines elements of the CommonKADS and IDEF methods, Explicit Models Design and 
Perceptual Control Theory. The following sections describe how those individual components should be used 
in constructing an intelligent help system. 
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5.6.2.1 The CommonKADS Methodology 

“Intelligent” software, such as that required for a truly adaptive help system, is built using knowledge-based 
systems (KBS), which imitate human reasoning. Such systems are typically composed of formal 
representations of knowledge about a particular domain and a mechanism that enables the system to “reason” 
about that knowledge through the application of inferences. This section examines the CommonKADS 
management and engineering methodology for analysing and designing knowledge-based systems and the role 
of that approach in developing help systems. 

The CommonKADS methodology provides a step-by-step approach to analysing a given problem domain. 
Questions are posed at each stage through standard “worksheets,” which provide a systematic tool for 
documenting both questions and answers concerning key issues. Individual, numbered guidelines are also 
offered to assist with the construction of more detailed components of the models. 

5.6.2.2 Application of CommonKADS to Help System Design 

The process of applying CommonKADS to build a help system involves the specification of the following six 
models: 

• Organisation Model; 

• Task Model; 

• Agent Model; 

• Knowledge Model; 

• Communication Model; and 

• Design Model. 

5.6.2.2.1 Organisation Model 

The Organisation Model is assembled during the initial feasibility and assessment phase of a CommonKADS 
analysis. The primary emphasis of that phase is to examine organisational or business processes that could 
benefit from the implementation of a knowledge system. Coupled with that is the subsequent feasibility 
analysis that weighs the costs associated with such an implementation against the projected benefits.  
Thus, a system must be sufficiently knowledge-intensive to warrant its implementation using CommonKADS. 
Worksheet questions help to identify the structure of the organisation, relevant processes, people and 
resources involved and knowledge assets required. 

It should be noted that the authors of the CommonKADS approach emphasise the importance of an initial 
phase in which a systematic analysis of the organisation is conducted. This points to situations where applying 
the methodology has revealed needs for a knowledge system that are substantially different from those 
projected at the outset of analysis. 

5.6.2.2.2 Task Model 

The Task Model in CommonKADS is created primarily as part of the organisational analysis and feasibility 
assessment and focuses on high-level tasks and goals of agents in the system. Tasks should be examined with 
a view to identifying those that are sufficiently knowledge-intensive and that would benefit from the 
implementation of a knowledge-based system. 
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To create an explicit representation, tasks and sub-tasks should be represented using flow diagrams from the 
Unified Modelling Language (UML). UML has been adopted by the developers of CommonKADS as the 
standard technique for schematically depicting activity, state and class diagrams that can represent a wide 
range of concepts such as data flow, inferences and task structures. 

Construction of the Task Model involves the creation of a task hierarchy, in which tasks are decomposed into 
sub-tasks. Questions posed during Task Model creation relate to constituent sub-tasks, the agents and objects 
involved, the timing of the task and knowledge required for performing it. That information can then be 
referred to later during knowledge model construction. 

Although CommonKADS specifies that UML be used for representing task hierarchies, there are limitations 
to UML’s expressiveness such that a complement to UML be considered in implementing help systems for 
certain applications. The limitations relate to the representation of temporal constraints, such as concurrency 
of tasks and their performance in real-time. In designing help systems for applications in which precise 
timings of events is critical, it is recommended that the IDEF3 language be used for the graphical 
representation of tasks and sub-tasks (see the “IDEF3” section, below). 

A formal statement of tasks and sub-tasks will help to identify responsibilities that can be carried out by 
software agents. Such tasks include: 

•  Monitoring the user’s activities; 

•  Inferring the user’s immediate goals and higher-order intentions; and 

•  Generating system plans to assist the user in the most effective way given current circumstances. 

Identification of those tasks should be performed in consultation with subject-matter experts. 

It should be noted that the creation of a task hierarchy is fundamental to several of the approaches that 
comprise the integrated methodology, including Explicit Models Design and Perceptual Control Theory.  
Task hierarchies are discussed further in sections that follow (see the “Explicit Models Design” and 
“Perceptual Control Theory” sections, below). 

5.6.2.2.3 Agent Model 

Like the two models already described, the Agent Model is developed during the initial feasibility phase.  
It is used to identify the participants in the itemised tasks so that their responsibilities can be incorporated into 
any resulting knowledge system. That process also assists with identifying expert sources of knowledge that 
can be useful in supplying information and providing rules for the knowledge base. 

Construction of the Agent Model involves examining the tasks in which each agent is involved, the other 
agents with which it communicates and knowledge that is required to complete its tasks. 

5.6.2.2.4 Knowledge Model 

The Knowledge Model contains a detailed enumeration of all knowledge required by the system to perform its 
tasks. Thus, most of the architecture of the knowledge system is designed during the formulation of that 
model. 

The Knowledge Model is subdivided into three categories: “domain,” “inference” and “task” knowledge. 
Domain knowledge contains all of the data used by the application, which, in object-oriented terminology, 
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would correspond to the class definitions and object instances. In the case of a help system, the domain 
knowledge should include knowledge relating to the capabilities and functions of the software, including user 
and system tasks described in the Task Model. Domain knowledge should also include information about the 
external environment, as contained in the EMD World Model (see the “Explicit Models Design” section 
below). 

The second component of the Knowledge Model is the inference knowledge, which is a collection of methods 
that act on the domain knowledge. CommonKADS provides a catalogue of inference templates, an approach 
that has multiple advantages. Creating methods that can be applied generally allows them to be reused readily 
in other applications. Because they have been applied in other situations, they come pre-tested and therefore 
contribute to the overall reliability of the knowledge system. Examples of inference knowledge in a help 
system would include methods for inferring goals from actions or hypothesising a plan based on a user’s 
actions. 

The final component of the Knowledge Model is task knowledge, comprising a set of higher-level methods 
that implement a hierarchy of tasks and sub-tasks. At the lowest level, the sub-tasks make use of methods in 
the underlying inference knowledge layer, which in turn operate on the domain knowledge. Task knowledge 
in a help system would include a representation of the full task hierarchy derived in the specification of the 
EMD Task Model (see the “Explicit Models Design” section below). 

As with the inference knowledge, there are templates available for task knowledge and they share the same 
benefits of reusability and reliability. Templates that are provided include those for planning, scheduling and 
monitoring, all of which are useful in a help system. Planning and scheduling are tasks required for plan 
generation and monitoring is essential to plan recognition (see the section on Explicit Models Design below). 

Knowledge modelling in any context typically involves the creation of an ontology, and CommonKADS is no 
exception. Ontologies are formally specified frameworks within which knowledge can be represented. A chief 
goal in producing an ontology is to identify patterns in the knowledge and exploit those to produce a highly 
organised and concise specification. One of the main motivations for generating an ontology for a particular 
domain is to allow its reuse in other applications. 

In order to describe fully the Knowledge Model for a help system, it will be necessary first to design the 
content of the various Explicit Models. The section on “Explicit Models Design” describes how those models 
are constructed. 

5.6.2.2.5 Communication Model 

The purpose of the communication model is to describe communication that must occur among agents in the 
knowledge system. That can include dialogue that is both between the user and system agents, and between 
individual software agents. 

Communication is broken down using a transaction model. For each pair of agents that must interact,  
a communication plan should be constructed (usually represented using UML) that outlines the flow of 
information and decisions affecting that flow. That is decomposed further into a detailed itemisation of 
individual transactions, where each one represents a message sent from one agent to another. Each transaction 
should be described in terms of the agents involved, the content of the messages and knowledge objects 
exchanged. 
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Standard patterns of communication are described in CommonKADS, such as the straightforward “Ask”  
and the associated “Reply,” or slightly more complex exchanges such as, “Require,” which can have “Agree” 
or “Reject” as responses. A library is offered for those and other standard modes of communication. 

One type of user-system interaction in a help system involves the presentation of information by the system 
and possible acknowledgement from the user. (In situations where it would be disruptive to the user to provide 
explicit feedback, the system should infer through indirect means that the user has received the information.) 
In addition to that system-initiated communication, users should be able to request help information from the 
system, which necessitates a second form of dialogue. Interaction may also consist of a clarification dialogue 
between user and system agents whereby the system seeks information when the user’s current intentions are 
ambiguous, but care must be taken to avoid unnecessary requests for communication with the user. Users may 
also seek clarification on system goals or activities. 

The Communication Model also describes dialogue that occurs among system agents, which is important in 
the help system to maintain co-ordination among semi-autonomous entities. Agent interaction in the 
Communication Model is revisited in the “Software Agent Paradigm” section below. 

5.6.2.2.6 Design Model 

The Design Model examines hardware and software issues related to the construction of the knowledge 
system. The aim is to take the implementation-independent specifications from the Knowledge and 
Communication Models and develop a detailed design for constructing the software application, and in the 
process preserve the structure of those models. 

CommonKADS help systems should be designed using the Model-View-Controller (MVC) architecture.  
In that approach, the Application Model contains the rules, inference functions, and knowledge bases that are 
responsible for the main functionality of the application. The Views subsystem provides external views of the 
data in the application model, which can be in the form of a user-interface or can also involve the presentation 
of information to an external software system. The Controller handles the processing of events, the triggering 
of tasks and inferences, and the responsibilities of the Communication Model. 

The next design step is identifying the target software and hardware platforms. It is recommended that 
CommonKADS systems be implemented in an object-oriented (O-O) environment. 

Some suggested languages for implementing CommonKADS systems are Prolog and Java, but that is not to 
the exclusion of other possible environments (For examples and source code, see [1] and the CommonKADS 
web site at www.commonkads.uva.nl). 

Once an implementation environment has been selected, the final step in constructing the Design Model is to 
create a detailed plan for implementation of the Application Model, Views and Controller, as well as the tasks, 
inferences and domain knowledge within the Knowledge Model. Many details of the plan are dependent on 
the chosen environment. 

CommonKADS also includes guidelines on project management that are designed to accommodate the unique 
needs associated with knowledge projects. 

http://www.commonkads.uva.nl/
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5.6.2.3 IDEF Standards 

The IDEF (ICAM Definition) standards, like the CommonKADS methodology, provide a set of guidelines for 
analysing processes, activities and information needs within organisations. The IDEF documents are a 
collection of numbered standards, each of which provides formal guidelines for analysis and design in a 
particular area. The two standards relevant to help system design are “IDEF3: Process Modelling” and 
“IDEF5: Ontology Modelling.” 

5.6.2.3.1 IDEF3: Process Modelling 

The CommonKADS approach uses UML for the schematic representation of processes and associated data, 
agents, tasks and inferences. One of the drawbacks of UML is that it is inflexible in representing temporal 
relationships and constraints among those elements. Two important temporal concepts are synchronisation and 
real-time systems. In the case of the former, a distinction is made between synchronous and asynchronous 
activities, i.e., those that occur at the same time contrasted with those that do not, respectively.  
That distinction can have important consequences for the system being modelled, where, for example, tasks 
that can be carried out synchronously can shorten the total time required to complete a procedure and thereby 
increase the efficiency of the system. When modelling real-time systems, much more attention must be paid to 
the precise times at which events occur, not simply their relative occurrence, and that can have direct bearing 
on whether or not the modelled system will perform as intended. 

Unlike UML, IDEF3 permits flexible modelling of temporal concepts. For example, symbolic representations 
exist for depicting whether multiple activities are synchronous or asynchronous and whether all activities must 
be complete before the next steps in the process can continue. 

Modelling of real-time systems is possible using IDEF3’s elaboration language, which allows symbolic 
representations of complex constraints that cannot be depicted using the schematic language alone.  
The language, based on a subset of the Knowledge Interchange Format, permits formal logical representations 
of process constraints and allows precise specification of event timings and durations. 

Because IDEF3 has full flexibility for temporal modelling, and because it has been in use for a long time, 
IDEF3 is recommended for use in help system development for applications with precise timing needs.  
In future, it may be possible to achieve greater flexibility for representing temporal constraints using UML. 
The upcoming release of the language (UML 2.0) promises to offer more of such capabilities, and the addition 
of the Object Constraint Language (OCL) to UML also features added support for temporal modelling. 

5.6.2.3.2 IDEF5: Ontology Modelling. 

Another IDEF standard that is relevant to help system design is IDEF5, which, like CommonKADS, provides 
specifications for ontology modelling. CommonKADS provides techniques for developing ontologies, 
including guidance on expert knowledge elicitation, formal descriptions of concepts, attributes and relations, 
and a formal language for representing ontologies. Although those are powerful components, ontology 
construction is explored in greater depth in IDEF5, with more guidance offered and more examples provided. 
The IDEF5 approach has five steps: 

•  Organising and scoping; 

•  Data collection; 

•  Data analysis; 
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•  Initial ontology development; and 

• Ontology refinement and validation. 

The organising and scoping phase examines the context and purpose of the project, and can make use of the 
material assembled during the specification of the Organisation, Task and Agent Models of CommonKADS. 
Data collection involves acquiring raw data by, for example, examining existing systems or eliciting 
knowledge from experts. Data analysis attempts to refine the raw data into a form more usable in an ontology. 
Initial ontology development creates a draft of the ontology which is further developed in the refinement and 
validation phase. The methodology divides each of those five stages into sub-steps and provides detailed 
guidelines on how to accomplish each. 

5.6.2.4 Explicit Models Design 

Explicit Models Design (EMD) is a development approach that seeks to make explicit the knowledge required 
by intelligent software systems. The approach compartmentalises software knowledge into five distinct, 
interacting models: 

•  Task Model, containing knowledge (beliefs) about tasks being performed; 

•  System Model, consisting of the system’s knowledge (beliefs) about itself and its abilities; 

•  User Model, comprised of knowledge (beliefs) relating to the user’s abilities, needs and preferences; 

• World Model, representing knowledge (beliefs) about the world relevant to the purpose of the 
software; and 

•  Dialogue Model, containing knowledge (beliefs) related to communication among human and 
software agents. 

Plan recognition and plan generation are two additional processes that operate within the EMD framework to 
enhance the software’s ability to support the user. Plan recognition seeks to establish the current goals of the 
user in the context of a larger plan. This process also seeks to recognise goals, plans and actions in terms of 
the help that might be required by a user to perform a task in a more effective way. Plan generation is used by 
the system to develop strategies to accomplish its goals, which principally involve providing help to the user. 
Those techniques, and the individual Explicit Models, are described below in the context of the help system. 

5.6.2.4.1 EMD’s Contributions to the Help System 

Within the help system, EMD offers a means of subdividing the content of the CommonKADS Knowledge 
Model into components, described in the following sections. Specification of all models must be done in 
consultation with subject-matter experts. 

5.6.2.4.2 Task Model 

The Task Model contains knowledge relating to the tasks being performed by the user, represented as a 
hierarchy of actions, goals and plans. At the lowest levels of the hierarchy are primitive interface actions,  
such as button clicks and menu selections. EMD recognises that each deliberate interface action carried out by 
a user is in support of a particular goal and that actions may be expressed in the terminology of such goals. 
For example, if a user clicks an “OK” button, the system can infer that the user’s goal was, “to click the ‘OK’ 
button.” While the system can easily infer that low-level goal from the simple act of clicking an OK button,  
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it is typically much more difficult to establish a higher-level purpose unless additional actions are observed. 
That process, which involves both higher-level goals and context (the particular “OK” button that was 
clicked), is described in the “Plan Recognition” section below. 

Above the primitive actions and their associated low-level goals in the hierarchy are higher-level goals,  
which can be achieved only by satisfying one or more primitive goals. Sufficiently high-level goals are often 
associated with what are commonly known as tasks. 

A path from a terminal node of the tree up to a higher-level goal constitutes a plan for accomplishing that 
goal, and there can be many possible plans for satisfying a given high-level goal. Plan recognition enables the 
system to determine which of those plans a user is pursuing (see “Plan Recognition” below) and plan 
generation (see the “Plan Generation” section) permits the system to select a course of action from its 
available plans, or to recommend a series of actions for the user to satisfy an inferred high-level goal. 

The tracking of user interface actions and inference of associated goals provides the system with a basis for 
understanding what a user is trying to accomplish and for helping that user in ways that are both relevant and 
useful. The system’s ability to deduce user goals would be an essential part of any intelligent help system and 
EMD provides effective methods for designing such a system. 

5.6.2.4.3 System Model 

The System Model is composed of the system’s knowledge about itself, its abilities and the means by which it 
can assist users. Like the Task Model, the System Model also contains a goal hierarchy, describing the tasks, 
goals and plans that the system can carry out in support of the user. Those goals are characterised as system 
support goals. 

In the help system, the System Model task hierarchy includes high-level goals, such as, “to assist the user,” 
which would be decomposed into sub-goals, such as those associated with assuming control of functions it 
had been assigned, monitoring system status and helping the user to complete his or her tasks. 

5.6.2.4.4 User Model 

The User Model is comprised of knowledge about the user’s abilities, needs and preferences. That information 
is obtained in three ways: 

•  From information volunteered by the user; 

•  From results of system requests of the user; and 

•  From system monitoring of user’s activities. 

It is worth noting that the system should be able to identify a user so that it can maintain a unique profile for 
each user. Unless that can be done, the system is reduced to providing information that is often too general, 
repetitive or useless. 

Information volunteered by a user often occurs in the context of specifying options and preferences to the 
system. It is important that users be able to specify preferences in order to facilitate efficient use of the 
software, and that is especially useful in applications that offer a large number of features and settings.  
One method of providing that flexibility is through the establishment of agreements between the user and 
system using the PACT approach (see “The PACT Approach and Automation Levels” section, below). 
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There are several ways in which systems can construct user models by explicitly asking questions of a user. 
For example, if the system has determined which task a user is pursuing, it could enquire whether assistance is 
needed in carrying out that task. The system also might ask if the user is aware of more efficient plans for 
accomplishing the task. Finally, if the system cannot determine a user’s current plan, it may seek clarification 
on the user’s intentions. 

In a truly intelligent system, User Model knowledge is acquired indirectly by monitoring user activities in a 
Task Model. If the system observes the user carrying out significant and logical portions of a particular plan,  
it assumes with a fairly high degree of confidence that the user understands that process. The system’s 
confidence increases as the user is observed to repeat the procedure. 

If the system determines there is a high probability that a user lacks certain required knowledge, it could 
signal a need to offer the information. The system must be able to gauge the importance of communicating the 
information in order to establish a method for doing so. For example, if elements of the total system are at risk 
of being lost, the user likely would need to be informed immediately. In contrast, advice on carrying out tasks 
efficiently might not be presented until the user has either completed the current task or finished the session. 

5.6.2.4.5 World Model 
The World Model contains the software’s knowledge about the external world: the objects that exist in the 
world, their properties and the rules that govern them. Those rules can take on a wide variety of forms, such as 
physical (e.g., the physical properties of objects in a workspace) and psychological (e.g., rules describing 
human behaviour in situations of high cognitive workload). 

The process of knowledge elicitation required to construct a World Model involves creating a formal 
representation of information gleaned from subject-matter experts. The resulting compendium of domain-
specific knowledge often includes useful information that experts have learned through experience is not 
contained in existing standard operating procedures. That knowledge can then act as feedback in the review of 
those procedures. 

Knowledge stored in the World Model will form the basis of tutorials and “wizards” guiding the user’s pursuit 
of goals. That guidance may include providing recommendations on creating and manipulating objects,  
as well as accessing and entering data, activities that frequently require an understanding of how elements 
within the software interrelate with those in the external world. That knowledge will be structured to support 
wizards that are adaptable to the range of domains for which help is to be offered. 

5.6.2.4.6 Dialogue Model 
The Dialogue Model contains knowledge about the manner in which communication takes place among user 
and system agents. Such communication would involve interaction between the user and system and among 
other system agents. 

Because there are many system agents in a help system, it is essential to specify a common language and 
protocol for them to communicate. In addition to that, effective user-system and system-system collaboration 
will require the explicit representations of communication provided by the Dialogue Model. 

5.6.2.5 Plan Recognition 
The ability to recognise user plans is an important element in EMD and enhances the system’s “awareness” of 
what a user is trying to accomplish so that it can decide how best to offer assistance. It is the infrastructure of 
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intelligent, adaptive aiding. The COLLAGEN plan recognition approach is recommended for help system 
implementation. 

COLLAGEN uses a “recipe” approach whereby plans that the user may be pursuing are assembled from plan 
fragments. When an interface action is observed by the system, the fragments are assembled to form alternate 
sets of plans that might explain why the user performed that action. There may be many possible sets.  
As further user actions are observed, the number of possible sets that encompass that series of actions 
diminishes, leading to a more accurate determination of the user’s true plan. 

Plan recognition should occur in the context of a system of rules to classify user activities according to a set of 
criteria that identify whether the user is carrying out the current task: 

•  Correctly; 

•  Completely; 

•  Consistently; 

•  Efficiently; and 

•  Safely. 

Violations of those criteria should signal a possible opportunity for the system to help the user (See “The Five-
Part Taxonomy for Plan Recognition” section, below). 

5.6.2.5.1 Plan Generation 

Plan generation is the process by which the system develops strategies for accomplishing its goals to assist the 
user. It is based on System Model knowledge of a hierarchy of available support goals and plans, Task Model 
knowledge of the user’s current goals and plans and User Model knowledge of the operator’s preferences and 
abilities. 

Plan generation in the help system would seek to construct the most effective plans for offering help to the 
user, e.g., by displaying a help message immediately or by waiting until a suitable time to present the 
information with less disruption to the user. System generation of plans also will depend on the selected level 
of automation. 

The processes of plan recognition and plan generation also can be associated with activities in Perceptual 
Control Theory (PCT), whereby plan recognition is associated with the perceptual input to hierarchies of 
system control loops and plan generation forms the behavioural output of similar hierarchies. Those parallels 
bridge the EMD and PCT techniques in the help system (see the “Perceptual Control Theory” section below). 

5.6.2.6 Feedback 

The concept of feedback is important in EMD for establishing mutual understanding and support between the 
user and the system, enabling one agent to inform another of its goals, plans and knowledge. Feedback can 
assume multiple forms, both explicit and subtle. 

Explicit feedback can occur in the form of dialogues among agents. For example, the system may ask a user 
whether he or she is familiar with a particular concept. The user’s response constitutes feedback to the system, 
providing knowledge for the User Model and therefore enabling the system to offer more appropriate 
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assistance. Similarly, a user might ask the system to explain its last action, particularly if that action was 
performed on the system’s own initiative. The response from the system is feedback that gives the user a 
better understanding of how the software operates. The communication of explicit feedback among agents is 
governed by the Dialogue Model, which must be designed to support exchanges among agents involving the 
provision of feedback. 

A less overt form of feedback arises in the form of system support goals and user goals. For example,  
if a user’s goal is to open a window in the software interface, the system will have a corresponding support 
goal to display that window. The display of that window constitutes feedback to the user that the goal of 
opening the window in the virtual environment has been achieved. Representations of user goals also are 
important forms of feedback since they are the primary means by which the system knows and learns about a 
user. Detecting user goals is detecting feedback in that those goals implicitly inform the system of a user’s 
plans, abilities and preferences. 

5.6.2.7 Perceptual Control Theory 

Another theoretical approach recommended for use in help system design is Perceptual Control Theory (PCT). 
IDEF and CommonKADS methodologies provide frameworks for approaching the design and implementation 
of the system. PCT and Explicit Models Design (EMD) have the potential to influence how the system 
functions within that implementation framework. This includes how it determines the goals a user is trying to 
achieve, the plans for achieving those goals and how it can assist the operator most effectively. The techniques 
complement one another and together provide an opportunity to form a comprehensive approach that 
combines the strengths of the individual components. 

PCT is founded on notions from control theory, in which closed-loop, negative-gain, feedback systems can be 
used to build powerful models of goal-directed behaviour and to implement complex systems. The ways in 
which PCT contributes to help system design fall into two basic categories: 

•  Performing hierarchical goal analyses; and 

•  Using PCT principles in the algorithms of the system. 

5.6.2.7.1 Hierarchical Goal Analysis of Help System Tasks 

A method has been proposed for Hierarchical Goal Analysis (HGA) using principles from PCT, and that 
technique has the potential to produce a robust and complete task and goal decomposition for help system 
implementation. That approach to systems analysis examines the goal of an agent as a desire to achieve a 
certain perception. 

The PCT-based HGA technique permits two additional analyses to be performed. The first is a stability 
analysis that identifies possible conflicts among multiple human and machine agents acting on the same 
system. The second is an analysis of information flow up the hierarchy, which can influence feedback in the 
system, affecting error-correction at higher levels. Traditional HGA systems analysis techniques consider only 
the downward flow of information in the hierarchy. In the case of a help system, it is important that 
information in the form of system and user goals and sub-goals be able to flow freely in both directions. 
Stability and information flow analyses could contribute to the generation of a robust goal hierarchy for the 
help system. 

A parallel can be drawn with the flow of information within the action, goal and plan hierarchy of Explicit 
Models Design. When a user is performing actions in the interface, there is a downward flow of information 
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to which the system responds with system support goals that feed back upward. From the point of view of the 
system, its goals are met with feedback from the user flowing in the opposite direction. Those properties make 
the PCT-based HGA approach equally applicable to a parallel analysis within the EMD hierarchies. 

5.6.2.7.2 Control Loop Hierarchies 

PCT systems can be implemented as a hierarchy of control loops, wherein the output of the higher levels 
determines the reference signals at the levels below and the perceptions at lower levels feed the inputs at the 
levels above. 

To implement control loops in the help system, the loops need to be assigned a hierarchy of goals, modelled 
largely at that level and described in the “Hierarchical Goal Analysis of Tasks in the Help System” section 
above. Those control loops have as input the actions carried out by the user. The actions serve as a basis for 
system perceptions about the user’s need for assistance and that constitutes feedback in the loops. 

5.6.2.8 Help System Goals and Sub-Goals 

If a high-level goal of the system is, “to have the perception (to believe) that the user is performing the current 
task sufficiently well, that is, in a way that requires no intervention by the system, a control loop would need 
to be monitoring activities at the interface (perceptual input) to detect the satisfaction of that goal. Support for 
such a control loop means that the system must infer and represent a belief that the user is engaged in a 
particular task based on perceived user activity at the interface. In order to infer such a belief, the system must 
have knowledge of the structure of goals and sub-goals necessary for operators to perform the task. 

The high-level system goal can be further decomposed into sub-goals concerning types of user activity that 
would suggest to the system whether some form of assistance is necessary. System control loops would 
identify a need to offer help when it is perceived that the user is not performing a task: 

•  Correctly; 

•  Completely; 

•  Consistently; 

•  Efficiently; and 

•  Safely. 

That gives rise to five sub-goals, each with its own hierarchy of sub-goals. The system’s decision to offer help 
is based in part on an assessment of user needs according to whether tasks are being carried out in compliance 
with the five criteria above. For more detail, see the section on “The Five-Part Taxonomy.” 

In an adaptive interface, system-generated plans to assist users should be incorporated into the behavioural 
components of control loops. Plan generation mechanisms should examine perceptual error signals and 
formulate appropriate behavioural responses to correct them. The plan generator should take into account the 
magnitude of the error signal in determining the optimal behaviour for providing assistance under the 
circumstances, whether it be automatic or involve querying the operator on how to proceed. 

5.6.2.9 Software Agent Paradigm 

An autonomous software agent is a programme with the ability to sense its environment and to act on that 
environment over time to achieve some purpose and to influence what it will sense in the future. Further 
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distinctions among agents can be made based on their behaviour, for example, communicative agents can 
interact with other agents or people; adaptive (or learning) agents can alter their behaviour based on past 
experience; and, mobile agents can move themselves to other machines. 

The agent-oriented development paradigm offers several advantages that were not addressed by earlier object-
oriented approaches, including: 

•  Increased modularity; 

•  Enhanced reusability; 

•  Improved organisational effectiveness; 

•  Increased speed; 

•  Increased reliability; and 

•  Better distribution. 

5.6.2.9.1 Agents in CommonKADS 

The CommonKADS (CK) methodology is entirely consistent with the use of software agents. The Agent 
Model in the methodology allows for systems with multiple human and software components. 

(See “The CommonKADS Methodology” section, above) 

A Multi-Agent System extension of the CommonKADS methodology (MAS-CommonKADS) has been 
proposed and is recommended for use in help system development. The methodology was developed to add 
specific agent-related constructs, including those associated with:  

a) Inter-agent communication;  

b) The division of tasks among individual agents; and 

c) The implications for implementation of multi-agent systems. 

The Communication Model in CommonKADS is primarily focussed on interaction between the user and 
individual system agents, with little attention paid to communication among the system agents themselves.  
To address that issue, MAS-CommonKADS incorporates a Co-ordination Model, which specifies how 
messages are exchanged, what communication protocols are used and what abilities each agent has for 
interacting with others. Because of the many commonalities between the Communication and Co-ordination 
Models, the latter should be treated as an entity within the former. 

The division of labour, allocated tasks, among agents is an important consideration in the MAS-
CommonKADS approach. The physical locations of agents and connections among them can influence the 
assignment of responsibilities to each component. Task allocation also affects the knowledge requirements of 
each agent. 

The multi-agent approach further influences the construction of Design Model specifications. Consideration 
must be given to network facilities and transfer protocols according to hardware and software constraints. 
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5.6.2.9.2 Agents in Explicit Models Design 
Explicit Models Design (EMD), described above, also supports multi-agent system development.  
EMD recognises the roles of the User and System as agents and can accommodate both multiple human users 
and system agents, each represented by its own User or System (Agent) Model. 

The EMD Dialogue Model provides a framework for describing communication among multiple human and 
system software agents. That model allows for various modes of communication, including the following, 
relevant to the help system: 

•  A system providing help information and requesting acknowledgement from a user; 

•  A system prompting a user for clarification feedback about that user’s goals; and 

•  A multi-agent system communicating internally to co-ordinate its overall activity. 

As indicated earlier, the System Model in EMD represents the system as a set of co-operating autonomous 
agents. Provisions are also made for external agents to play a role supporting the goals of both human users 
and system agents. 

5.6.2.10 Hierarchical Goal Analysis (HGA) of Tasks in the Help System 
Hierarchical goal analysis (see above, Section 5.4 Perceptual Control Theory, for a discussion of HGA) can be 
applied to the task goal hierarchy for the help system. In the same way, HGA can also be used in an analysis 
and design of a goal hierarchy for a network of intelligent agents to assist human users. That analysis offers 
the same benefits described earlier: a thorough decomposition of the goal-plan-action hierarchy along with 
stability and information flow analyses. 

The highest-level agent network goal could take the general form: “to perceive (believe) that the user is 
performing the current task sufficiently well,” i.e., that the user does not require assistance from any system 
agent. That goal then can be decomposed into sub-goals regarding the perception of different signs that a user 
needs assistance, e.g., “to perceive (believe) that the user is performing the current task in the most efficient 
manner.” An error signal would result when inefficiencies in the user’s actions are detected, leading system 
agents to consider intervention. 

5.6.2.11 Ecological Interface Design 
Ecological Interface Design (EID) is a framework for problem domain analysis and the design of human-
machine interfaces in complex work environments. The approach incorporates elements from ecological 
psychology, particularly the emphasis on the importance of considering the interaction of humans with their 
environment. While most traditional interface design approaches confine their attention to human 
characteristics, EID also examines how humans interact with their surroundings, taking into account both 
physical and cognitive factors, in the context of the complex system under control. To achieve that, EID offers 
concrete guidelines on interface design, with the aim of producing optimal usability and safety. See [2]. 

EID should be considered for use in the context of applications that are safety-critical and involve high 
cognitive workloads. 

5.6.2.12 Integrated Methodology for Help System Design 
The foregoing sections presented a variety of theoretical approaches to construct a comprehensive, integrated 
framework for the design and implementation of an intelligent, adaptive, agent-based system for providing 
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help to software users. The resulting integrated methodology is composed of elements from the following 
design approaches: 

• CommonKADS (CK) – a knowledge management and engineering methodology that guides the 
systematic analysis and design of intelligent systems; 

• IDEF Standards – a complement to the CommonKADS methodology through its more effective 
support for temporal modelling and ontology construction; 

• Explicit Models Design (EMD) – a methodology for building models that identify and 
compartmentalise the knowledge required by intelligent systems; 

• Perceptual Control Theory (PCT) – a feedback control system model for goal-directed behaviour in a 
system; and 

• Software Agent Paradigm – a software design approach that supports enhanced modularity, 
reusability and efficiency. 

The integration of the above techniques into a comprehensive, cross-disciplinary design framework serves the 
goals of generating a robust, maintainable and reliable help system. 

Following is a description of the recommended procedure for designing and implementing a knowledge 
system within that framework. Steps are designed to be pursued in the sequence presented. 

To facilitate the presentation of the procedure, a legend is provided to help distinguish the models that 
comprise the CommonKADS (CK) knowledge and engineering methodology and those used in Explicit 
Models Design (EMD). 

CommonKADS (CK): Explicit Models Design (EMD): 
Organisation Model Task Model (EMD) 
Task Model (CK) User Model 
Agent Model System Model 
Knowledge Model Dialogue Model 
Communication Model World Model 
Co-ordination Model (MAS-CommonKADS)  
Design Model  

5.6.2.13 Help System Design Methodology 

• Construct an Organisation Model to describe the organisational structure within which the knowledge 
system will be used; 

• Construct the Task Model (CK), including task hierarchies for all agents identified above (use IDEF3 to 
represent the hierarchies in applications with precise timing needs); 

• Construct the Agent Model identifying all user and system agents and their relationships; 

• Generate the Task Model (EMD) by extending the Task Model (CK) to produce task hierarchies for all 
agents using PCT-based hierarchical goal analysis; 
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• Develop the User Model according to the need to track user preferences and knowledge; 

• Specify the content of the System Model to enable representation and use of system preferences and 
knowledge; 

• Design the World Model to contain required information about the environment necessary for the 
knowledge system to operate effectively; 

• Specify the Dialogue Model, Communication Model and Co-ordination Model to govern the format and 
content of communication among agents (ensure that the ability exists for agents to provide feedback to 
one another); 

• Use IDEF5 to design an ontology to represent the contents of all Explicit Models; 

• Develop the Knowledge Model to encapsulate the ontology and an associated knowledge base containing 
information from all Explicit Models; 

• Within the Knowledge Model, represent the Task Model (EMD) as a hierarchy of PCT loops that use plan 
recognition and plan generation to form input perceptions and output behaviours; and 

• Create the Design Model to produce design specifications for the target knowledge-based system. 

5.6.2.13.1 Generalised Principles of Help System Design 

Now that the theoretical infrastructure underlying the help system has been described, it is useful to examine 
some general principles for guiding the construction of an adaptive interface: 

• Combine principles from CommonKADS, IDEF Standards, Explicit Models Design, Perceptual Control 
Theory and agent-oriented development to design and implement the system, as described above; 

• Apply the five-part taxonomy within the plan recogniser to classify user interface actions in terms of user 
help requirements. The taxonomy of requirements includes efficiency, completeness, consistency, 
correctness and safety, which guide the establishment of a network of rules that enable the system to 
determine a user’s help requirements; 

• Use the results of the user needs analysis to develop plans that provide optimal help given the system’s 
on-going knowledge of the user; 

• Structure the interface to maximise the effective execution of tasks with respect to the five criteria above; 

• Structure the interface to ensure that users receive continuous support in executing plans and achieving 
goals. A variety of support mechanisms should be implemented, including, among other things, wizards, 
tutorials and ongoing dialogues between the user and system. Their purpose is to help create a virtual 
environment where help is integrated, seamless and natural. Not only should those help mechanisms 
provide guidance and education on software use, but they also should structure the user’s pursuit of tasks 
in a way that allows the system to track user goals and plans with a substantial degree of accuracy.  
The goal is for the system to take maximum advantage of opportunities to assist users while minimising 
unnecessary disruptions; 

• Implement each object in the software as an intelligent agent responsible for monitoring its status relative 
to the five help criteria; 

• Allow users to specify a “contract” with the system governing the nature of help to be provided; and 

• Ensure that help dialogue encourages bidirectional feedback between the user and the system sufficient to 
mutual understanding. 
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Those items are described in greater detail in the following sections. 

5.6.2.14 The Five-Part Taxonomy for Plan Recognition 

In the “Perceptual Control Theory” section, a set of five criteria was introduced for use in classifying whether 
the user is carrying out the current task: 

•  Correctly; 

•  Completely; 

•  Consistently; 

•  Efficiently; and 

•  Safely. 

The control loops monitoring user activity should implement rules to determine whether the above criteria are 
being met. When a failure is identified, the system is signalled (by one or more agents) that the user may 
require help. A key advantage of that approach is that the rules are not application-specific and can be 
implemented in any help system that includes, or can construct, a complete hierarchy of tasks and plans for 
the application. Additionally, most of the help information presented to users as a result of the rules can be 
derived directly from the task hierarchy (e.g., showing a correct sequence of actions to achieve a specific 
goal), greatly reducing the need to generate custom help content. 

Following is a discussion of the rules that will be associated with each of the five criteria. 

5.6.2.14.1 Correctness 

Correct execution of plans is associated with carrying out the necessary steps in the required order. There are a 
few possible scenarios when the system observes a user perform an action that is not the expected next step  
in the currently inferred plan. For example, it is entirely possible that a user may not know what step should 
be performed next and has chosen an incorrect action. A user also might repeat a step in a plan,  
either accidentally or because of a misunderstanding about the correct procedure. Such scenarios provide 
opportunities for the system to offer clarification on the correct approaches. 

Alternatively, a user may have abandoned the current plan, which again offers a possible help opportunity, 
since the abandonment may be the result of that user not knowing the correct steps required to finish what was 
begun. 

There is also the possibility that a user has deliberately decided not to pursue the original plan, or to follow an 
alternate plan simultaneously. The knowledge in the User Model relating to the user’s expertise, knowledge of 
particular software functions and past behaviour executing tasks should be organised in a way to facilitate the 
system’s ability to discriminate among such possibilities. Failing that, it may be necessary for the system to 
ask for clarification on the user’s intentions or maintain a level of uncertainty until a clear plan sequence can 
be identified. 

To accommodate such inference capabilities, the plan recogniser must allow for the possibility that multiple 
plans are being pursued concurrently. 
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5.6.2.14.2 Completeness 

Incomplete execution of plans also can be associated with a variety of scenarios. For example, a user may 
omit an action while executing a plan, suggesting the system should inform the user of the missed step. A user 
also might stop carrying out a plan before all the steps are complete, resulting in a need for the system to 
identify whether abandoning the plan was intentional or inadvertent by examining the User Model and task 
history, and possibly asking for clarification. 

Delays in completing a plan may occur when users are distracted or are pursuing another plan at the same 
time. In such cases, it may be desirable to present a reminder about the unfinished (suspended) task. 

Some actions in certain plans will be identified as optional (either in their ordering or in their presence in a 
plan) and completeness rules will need to discern whether the omission of an optional step violates the 
completeness criterion. 

It should be noted that in many cases there is overlap between the completeness and correctness criteria, 
where, for example, if a user skips a step in carrying out a plan, it will be both incorrect and incomplete. 
However, beginning a plan correctly but not finishing it would lead to a correct, but incomplete plan.  
In contrast, finishing a plan with an incorrectly executed step might be thought of as a “complete,”  
but “incorrect” plan. Such distinctions justify treating the two criteria separately. 

5.6.2.14.3 Consistency 

User consistency with task execution can be determined by comparing steps taken to achieve a particular goal 
with those taken by the user to satisfy that goal in the past. Differences can reveal a number of different 
things. Inconsistencies in the performance of tasks may indicate confusion on the part of a user as to the 
correct procedure, presenting an opportunity for the system to provide help. Inconsistencies also may reveal 
that a user has learned a new plan for achieving a goal, and that new knowledge should be noted in the User 
Model. 

An important point is that an observation by the system that a user is performing a task inconsistently with his 
or her past behaviour may not indicate that intervention is required, unless there are signs of incorrect or 
inconsistent plan execution. 

A user who varies his methods of carrying out plans may simply be trying to achieve variety in their 
execution. Knowledge of such tendencies should be stored in the User Model to facilitate future classification 
of user activity according to the five criteria. 

Establishing consistency requires knowledge of past activity and the system will not have that historical data 
for users who are new to the help system. Because inexperienced users likely will require immediate help, 
default settings for typical users will serve as a starting point for building a user profile. For intermediate and 
advanced users, however, the system may conduct a period of observation to become familiar with that user’s 
preferences, needs and methods. 

Maintenance of activity profiles should be an ongoing process for both novice and expert users. The system 
should analyse history information contained in the Task Model for a user to determine preferred plans for 
accomplishing goals and knowledge of software features. By performing such analyses, historical task data 
can be archived more concisely and accessed more quickly. 
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5.6.2.14.4 Efficiency 

A simple rule for identifying inefficiency in user actions would compare the current plan with alternate plans 
for achieving the same goal. The presence of another plan with fewer steps suggests that the user should be 
informed of the simpler alternative. 

There may be situations where alternate plans require the same number of steps, but where one would be 
considered more efficient. For example, selecting a menu item using a keyboard shortcut is often faster than 
using the mouse to pull down the menu. Also, some keyboard shortcuts are easier to perform than others,  
such as pressing the Delete key instead of Ctrl-X to delete an object. A system of rules should take such 
factors into account and assess the relative ease with which competing plans could be executed. 

Another issue is that a particular action may be more or less efficient depending on the other actions that are 
part of the same plan. For example, if a user has been typing data into a dialogue box, it typically will be most 
efficient to press the Return key to dismiss the window. However, in circumstances where the user’s hand is 
already on the mouse, it would be easier to click the OK button. Rules in the knowledge system should 
evaluate the efficiency of steps in the context of the broader plan. 

A final rule-based method to increase user efficiency involves identifying plans that the user is pursuing that 
could be completed by the system without further input from the user. In such situations, the system either 
could automatically complete the task for the user, or could offer to do so with the user’s approval, depending 
on the selected automation level in the user’s contract with the system. In order to offer such capabilities,  
the help system should be able to distinguish between actions in the goal and plan hierarchy that require 
human input and those that do not. An example of a task requiring no human input is the ability of most web 
browser software to enter information into online forms automatically. 

5.6.2.14.5 Safety 

Safe execution of tasks will not be a critical issue in all applications, but in some domains (e.g., aviation, 
industrial process control), the safety of humans and equipment can be a deciding factor. 

In practically all software applications there is a safety issue surrounding the avoidance of data loss. A simple 
example of a safety mechanism is the standard prompt to save changes when a file is closed, but more 
involved methods can be imagined. For example, new users could be presented with additional warnings when 
deleting complex objects, reverting to default settings or carrying out other tasks where a substantial amount 
of information could be erased inadvertently. The availability of a “multiple undo” capability helps reduce the 
risk of irreversible violations of safety criteria. 

5.6.2.15 The Five-Part Taxonomy for Plan Generation 

The on-going user-needs analysis, described in the preceding section, is responsible for determining whether 
or not a user requires help with respect to each of the five help criteria. Deciding when and how best to 
provide that help falls to plan generation techniques. 

Generated plans will depend on the nature of a user’s need for help. Following is a description of help needs 
as they fall within the five-part taxonomy. 
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5.6.2.15.1 Correctness 

If a plan is being pursued incorrectly, it is likely that the user should be informed about it promptly.  
For example, if an incorrect step is performed in a plan, the user will need to know that his goal may not have 
been satisfied since the plan was executed incorrectly. Thus, the correct procedure for accomplishing that goal 
should be conveyed to the user promptly and directly, perhaps through the use of an immediate help window. 

On the other hand, when there is system ambiguity as to whether a user is carrying out a plan incorrectly,  
or has simply abandoned it altogether, it will be useful to present that user with a question about her 
intentions. The help system should allow clarification questions to be presented to users in a non-disruptive 
fashion, such as through the use of a floating window. Although responding to such questions will be at a 
user’s discretion, doing so will improve the help system’s model of that user, and therefore its ability to 
provide useful help to her. 

A user may wish to monitor plans that the system believes she is pursuing and that could inform her that an 
action is not a correct part of the current plan. That monitoring could occur in a window showing the currently 
inferred plan in the context of higher-level tasks, as well as what the next action should be. It also could alert 
the user that the system believes she is pursuing some goal other than her true goal. A mechanism could be 
provided for the user to correct the system’s misunderstanding by specifying the actual plan being pursued, 
which will provide a learning opportunity for the system. While most users will not find it practical to monitor 
such a display continuously, it will be very useful in situations where users are unsure of correct procedures. 
Providing a monitoring mechanism for a user could provide opportunities to understand how such information 
might be organised and presented more effectively in future. It could serve as an experimental design element 
with some option for user feedback. 

5.6.2.15.2 Completeness 

An incomplete plan can be the result of a user omitting a required action during its execution and, as such,  
it is important to inform the user of that omission. In those cases, a help window should be displayed 
immediately so that the user may correct the error and achieve the intended goal. 

Incompleteness may also result from abandoning a plan and pursuing another in its place. In such cases,  
it may be important to establish through a clarification dialogue whether the abandonment was the result of a 
shift in intentions or if it arose because the user lacked required knowledge. The latter case would signal a 
need to present the missing knowledge. A user might also abandon a plan with which he is unfamiliar in 
favour of one that he is confident will work. In that case, and under the right circumstances, the system should 
offer assistance on the initial plan about which he was unsure. Situations where users are pursuing multiple 
simultaneous plans or have been distracted would not warrant intervention from the system, but provide an 
opportunity for clarification. Questions seeking clarification should be presented unobtrusively, since it will 
not always be possible for a user to suspend the current task to respond to the help system. Clarification 
questions may be presented in, for example, a help system status line, to enable users to monitor system 
activity. In situations where the user fails to notice the question within a reasonable period of time, the system 
should alert him to its presence. Care must be taken to make such alerts noticeable but not intrusive and, 
where possible, context should be considered before displaying the alert. In applications where space is 
insufficient to present questions in full, a discreet notification may be used, such as the display of an icon.  
The “Plans for Providing Help” section, below, offers further discussion of methods for presenting 
clarification questions. 
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5.6.2.15.3 Consistency 

Some inconsistent behaviour on the part of a user may indicate confusion as to how to achieve current goals. 
Unlike correctness and completeness, the consistency criterion often will not be associated with an overt sign 
that the user requires assistance and so, typically, will not call for the same immediate presentation of help 
information. In those cases, it will be more appropriate to use a less overt form of help, such as waiting for a 
pause in a user’s activities before presenting information, or displaying a subtle prompt to tell the user help is 
available. 

5.6.2.15.4 Efficiency 

As with consistency, the efficiency criterion usually is not associated with problems in completing the current 
task and, therefore, an inconspicuous or delayed form of help is also appropriate. Delayed help will presented 
upon completion of the current plan, at idle time, at the end of the session or under other circumstances that 
will not disrupt user performance. 

5.6.2.15.5 Safety 

The safe execution of tasks is associated with a high priority for conveying help to the user. Unsafe acts may 
or may not involve risk to human safety, but there may be risks of data loss. Help information relating to 
safety will necessitate immediate notification of the user in a conspicuous manner, such as with an auditory 
signal accompanying a dialogue box requiring user acknowledgement. 

When accidents occur in safety-critical domains, such as aviation, they are typically followed by 
investigations to identify their attendant causes. An accident occurring in the context of a user interacting with 
an intelligent system provides an opportunity for investigation results to assist software developers in 
redesigning systems to prevent future accidents. The software application, Systematic Error and Risk Analysis 
(SERA) Tool, was developed to help accident investigators identify failures and their pre-conditions using 
principles of Perceptual Control Theory. Results of investigations using SERA would be useful to designers 
seeking to build safer software systems. 

5.6.2.16 Plans for Providing Help 

Help can be offered to users in a variety of forms: 
• A “wizard” interface to guide the user through a complex process, such as creating a workspace and 

configuring its contents (see the next section on “Wizards”). 
• Tutorials tailored to a user according to what the system believes the user knows. It may be presented 

according to a prearranged schedule resulting from an agreement (PACT “contract” – see “The PACT 
Approach and Automation Levels” section, below) between the user and system (e.g., a weekly mini-
tutorial on a feature with which the user is not familiar). 

• Interactive tutorials, whereby the system steps through a description of a procedure while the user 
carries it out. 

• Tutorials providing guidance on how to solve an application-specific problem that a user is 
confronting. That would occur, say, in response to a user asking, “How do I finish this [the task the 
user has begun]?”. 

• Presentation of a question asking if the user would like assistance or a question asking for 
clarification of a user’s intentions: 
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Such questions could be displayed in a help system panel within the main application window,  
and could be accompanied by one or more indicators, such as light bulb icons, to show the availability 
of messages from the help system. A small panel could show the current question or partial text of 
that question so a user could decide whether to respond. If the user did not respond within a specified 
time, the light bulb icon and question would flash two or three times to attract the user’s attention. 
The question would disappear if it continued to be ignored, perhaps after a second round in which the 
light bulb flashed. Users still should have the option of reviewing that material at their convenience, 
at the end of a session or in other circumstances deemed appropriate; and 

If the system observed a prolonged period without user activity, it might reasonably conclude that the 
user had suspended activity and was away from the computer. In such a case, the presentation and 
other system-related activities with respect to help signals to the user would be delayed until work 
with the software resumed. 

• During any review of system proffered help, users would be able to examine the context in which it 
was determined that help was appropriate, specifically the context of attendant user actions and 
system-inferred goals and plans from those actions. The display of questions and optional review will 
be controlled as part of the user’s PACT agreement with the system (see “The PACT Approach and 
Automation Levels” section, below). 

• Presentation of web-based help. 

• Display of a light bulb or other alert indicating the availability of help information when selected. 

• Brief pop-up descriptions of interface elements when the mouse is “over top”. 

• An offer to complete a task that the user has started. 

• Periodic presentation of tips with which the system believes the user is unfamiliar. 

5.6.2.16.1 Wizards 

To further the goal of creating an interface in which users receive continuous support in executing plans and 
achieving goals, a variety of wizards should be available to users. The wizard interface approach offers a 
number of advantages: 

• It simplifies tasks for users because the system takes care of detailed plans and contextual supports 
along the way, making it useful for both novice and expert users; 

• Incidental learning occurs when users are guided through procedures for achieving high-level goals; 

• By stepping a user through a well-defined procedure, the help system can infer the user’s intentions 
with much greater confidence (especially true for novice users) than if he were proceeding on his own 
initiative. That substantially increases the relevance and usefulness of help offered by the system 
about the task; and 

• Given the built-in constraints on task execution, there will be fewer opportunities for plans to violate 
any of the help system criteria. 

To help design and implement a wizard, scenarios will be developed to describe how typical knowledge 
elicitation sessions proceed. That information will be useful in establishing specifications for audio wizards, 
described next. 



ARTIFICIAL COGNITION AND CO-OPERATIVE AUTOMATION 

5 - 66 RTO-TR-HFM-078 

 

 

5.6.2.16.1.1 Audio Wizards 

Consideration should be given to the creation of a wizard interface that uses an audio dialogue between the 
user and system. Reliable speech tools are now widely available and the incorporation of those techniques into 
a help system is a logical way to make dialogue more natural between the system and user. 

In an audio wizard, questions are posed using software speech generation and spoken answers from users are 
interpreted using speech recognition. Questions should be phrased to limit the range of possible responses to 
ensure high recognition accuracy. 

5.6.2.17 Control Loop Design 

5.6.2.17.1 Centralised System Model Control Loops 

Responsibilities for determining user help needs are divided among the System Model and agents associated 
with individual interface objects. Control loops in the System Model should monitor user actions and apply 
the general rules identified in the earlier section, “The Five-Part Taxonomy for Plan Recognition.”  
That includes a hierarchy of rules based on those introduced in the “Perceptual Control Theory” section.  
A high-level description of control loop goals is as follows: 

To perceive (believe) that… 
• …the user is performing the current task sufficiently well and does not require help; 
• …the user is performing the current task efficiently; 
• …there are no plans with fewer steps available to achieve the current goal; 
• …there are no more efficient plans of the same length to achieve that goal (e.g., shorter time 

requirements or greater convenience for the user); 
• …the user is performing the task correctly; 
• …the user has not performed a step that is not in the current plan; 
• …the user has not performed steps in the current plan that are out of order; 
• …the user has not repeated a step in the current plan unnecessarily; 
• …the user is performing the task completely; 
• …the user has not omitted one or more steps in the current plan; 
• …the user has not suspended the pursuit of a plan; 
• …the user is performing the task consistently; 
• …the user has not behaved in a manner inconsistent with past task performance; 
• …the user is performing the task safely; and 
• …the user is performing the task consistent with the integrity of key human, machine and data 

elements of the total system. 

5.6.2.18 Objects as Intelligent Agents 

All interface objects in the target software should be implemented as a network of intelligent agents,  
which has the effect of increasing modularity, organisation and reusability among help system components. 



ARTIFICIAL COGNITION AND CO-OPERATIVE AUTOMATION 

RTO-TR-HFM-078 5 - 67 

 

 

(See the “Software Agent Paradigm” section) 

Agent-based objects are to include all standard interface elements, such as windows, buttons and menu items, 
as well as application-specific objects. Each agent is responsible for monitoring its own status relative to the 
five help criteria, described earlier. Those include checking the following properties: 

• Correctness – e.g., that the value of a variable or the contents of a text box is within an acceptable 
range; 

• Completeness – e.g., that all data have been entered for a particular object; 

• Consistency – e.g., that data are consistent with the execution of current tasks; 

• Efficiency – e.g., that a frequently used menu item is associated with an easily accessed keyboard 
shortcut; and 

• Safety – e.g., that some agents will have tendencies for self-preservation, particularly where loss of 
data is a risk. 

Agent processes monitoring those criteria should be continuous and System and User Models should be able 
to query agents as needed. 

Agents should monitor the usage of their associated objects by the current user and store important 
information, such as when they were first accessed, the most recent access and the number of times they have 
been accessed. That information will be available for compiling User Model knowledge about software 
features and user familiarity with them. 

As noted earlier in the “Centralised System Model Control Loops” section, the System Model should monitor 
user needs in the context of the general rules of the five-part taxonomy. Specific rules should be associated 
with interface objects and their agents. 

5.6.2.19 The PACT Approach and Automation Levels 

Since it is unrealistic to expect that all users will require the same level of automation from an intelligent 
system at all times, a need exists for users to be able to specify their requirements of the system. In the help 
system, circumstances of a particular task and operator preferences will dictate what automation level is most 
appropriate, and those could change over the course of a session. 

One method of handling automation levels in the air domain is the Pilot Authorisation and Control of Tasks 
(PACT) system. That approach is based on the notion of contractual autonomy, in which a user and system 
establish an agreement, or contract, on the system’s responsibilities. Contracts are made using a system of six 
levels, numbered from 0 (no automation) to 5 (fully automatic). Table 5-4 shows the levels of autonomy in the 
PACT approach. 
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Table 5-4: PACT Levels of Autonomy 

Levels Operational 
Relationship 

Computer Autonomy Pilot Authority 

5 Automatic Full Interrupt 
4 Direct Support Advised action unless 

revoked 
Revoking action 

3 In Support Advice, and if authorised, 
action 

Acceptance of advice and 
authorising action 

2 Advisory Advice Acceptance of advice 
1 At Call Advice only if requested Full pilot, assisted by computer 

only when requested 
0 Under Command None Full 

 

Contracts in a help system should offer users the ability to set the autonomy level and change it at any time 
during a session, as well as provide the flexibility to customise the provision of specific forms of assistance. 
That customisation should allow users to request help at specified intervals or to ask that help be provided in a 
specified form. 

In order to aid in deciding the most appropriate level of assistance to offer a user given the selected autonomy 
level, the system should maintain a set of numerical scores in the User Model to indicate the preferences and 
needs of the current user. Those act as thresholds in determining when the system should intervene, based on: 

•  System beliefs that the user possesses relevant knowledge; 

•  Feedback from the user in response to each help offer from the system, either by using a “Don’t show 
again” button or by ranking the usefulness of the information on a scale of 1 to 10, as in, “How would 
you rate the value of this help?” The system also should have the ability, at least in some 
circumstances, to judge the suitability of displaying a message again, even without a user selecting 
the “Don’t show again” option. In most cases, after information has been displayed and 
acknowledged by the user, the system will infer that knowledge will not need to be presented again, 
unless subsequent user actions demonstrate that it was not understood or has been forgotten; 

•  General feedback from the user on preferred types of help, based on online questionnaire responses 
from the system on favoured techniques. Such a questionnaire could elicit general information on the 
efficacy of help provided to a user, perhaps at the end of a session. The PACT contract will allow 
users to enable or disable the feature according to their desire for such a feature; 

•  Historical system knowledge of techniques that have been most effective at conveying information to 
that user in the past, revealed by acknowledged help messages and demonstrated task knowledge; and 

•  State of completion of the current task, so as to avoid unnecessary disruption. 

5.6.2.20 References  
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CommonKADS. EKAW 2000: 33-48.  
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5.6.3 Autonomous Decision Making for an Underwater Unmanned Vehicle 

5.6.3.1 Underwater Unmanned Vehicles 

Unmanned vehicles have been around for some years in all environments – on the ground (UGV), in the air 
(UAV), surface water (USV) and underwater (UUV). More strictly, these have been primarily in the category 
of remotely operated vehicles (ROV), in that there are command and communications links (direct or via 
satellite) to a remote human operator, who maintains full system control at all times.  

In the UAV field in particular, the effort is directed at improved data fusion and representation, in order to 
allow the human operator to control several UAVs at once, furnishing the vehicles with autonomy over lower 
level functionality, but nowhere near full autonomy. Underwater ROVs tend to be tethered to a mother ship 
via an umbilical cord, supplying power and command and communications links [1].  

The free swimming UUVs tend to be very small, of limited endurance, with a single specific task, such as 
inspection of underwater objects [2]. In all these cases the man is being kept firmly in the loop.  

However, the envisaged operational environment for military UUVs precludes such an umbilical link and, 
indeed, for certain mission phases, any sort of communications with the vehicle at all. This will require the 
UUV to possess the capabilities to perform all the tasks to be performed, from navigation, power 
monitoring/management, threat identification and avoidance and payload delivery, through to the far less 
concrete area of high level decision making in the face of high levels of uncertainty.  

The power source will also have to be wholly internal to the vehicle. This is currently based on batteries, 
although it is likely that fuel cells will replace these as the technology improves. Even the latter will only yield 
a useful energy output of about 400 Wh per kg, with the potential to (possibly) double this figure within the 
next 5 years. With current UUVs, such as the USS Manta, requiring up to 50 kW for propulsion alone, plus 
several kW more for sensor operation (e.g., sonar), the size of the problem of supplying sufficient power to 
allow the performance of any kind of mission becomes apparent.  

The addressing of this power management problem, which is usually denoted by HOTEL, What does HOTEL 
mean? It boils down to answering the question ‘can I do the mission and return to my recovery point on my 
power reserves?’. This baselining of the projected energy consumption for the whole mission, continually 
updated during the mission, underpins every other assessment and decision made during the mission. 

5.6.3.2 Envisaged Theatre of Operations for Military UUVs 

The US Navy envisage the littoral zone to be the most important for UUV operations [3], from mine counter 
measures prior to a naval assault, through coastal and channel mapping via sonar, to deploying sonars near 
enemy naval installations to track asset movement and even kill them with torpedoes. This poses certain 
problems, from vehicle design through to sensor operation. The traditional teardrop shape is the most 
efficient, from a drag minimisation point of view. However, this is not appropriate for very shallow waters, 
giving rise to a significant risk of running aground. Here, a thinner, flatter, more Ray-like profile is more 
appropriate (e.g., Manta), with a higher power consumption as a result. Conventional sonars will have their 
performance degraded significantly from bottom clutter in the shallows.  
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There are, however, research efforts directed at biomimetic sensors, emulating the capabilities of the sonar 
systems of dolphins, which do not suffer significantly from such problems. This will be crucial, as, in all these 
projected scenarios, the UUV will be totally reliant on a main forward sonar and left and right short range 
sidescan sonars to prevent it from running aground (or into obstacles), as it follows the coastline or navigates 
through narrow channels. 

5.6.3.3 Approach to Automation and Decision Making  

Whenever we automate any process, there are certain risks associated with that automation. Obviously,  
in some cases these risks are lower than in the equivalent manual process, in others they are higher. The 3 risk 
factors of primary concern here are those relating to communication (right information at the right time), 
workload (system overload) and unpredictability (moving outside the zone covered by prior knowledge and 
experience). 

Figure 5.31 provides a schematic representation of the change in adaptiveness vs. levels of human control, 
automatic control and cognitive cooperation, for these 3 important risk factors of communication, workload 
and unpredictability. This displays, in particular, the greater susceptibility of human operators to increased 
workload vs. an automated system and the reverse in the case of increased uncertainty. Any ways in which we 
can improve the way an automated system can handle uncertainty will be of particular benefit in the context of 
an autonomous system. 
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Figure 5-31: Cognitive Co-operation and Human vs. Automation Control. 

This is explored further in Figure 5.32, which addresses leveraging autonomy through cognitive automation. 
This represents the opportunity for pushing the boundary back between what can be achieved in an automated 
system (traditionally skill and rule based behaviour) and that, knowledge and experience based area that 
requires human control. This requires the ability to reason effectively in the presence of significant levels of 
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uncertainty. This can be based on a combination of model based reasoning and a suitable methodology for 
resolving situations in which no clear decision is forthcoming, due to conflicting objectives, etc. (e.g., neuro-
fuzzy or genetic algorithms, e.g., [4]). 

Leveraging autonomy through cognitive automation
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Figure 5-32: Leveraging Autonomy through Cognitive Automation. 

The underlying requirement is for a system that can provide for dynamic, context sensitive adaptiveness,  
so as to engage each task at the appropriate level of autonomy. 

It is useful here to simplify the different (cognitive) levels of tasks into 3 groups, namely system health 
monitoring, mission control and strategic control. Figure 5.33 shows the progression of the dividing line 
between automated control and human control, from manned underwater vehicles, through the traditionally 
understood uninhabited vehicle, to an unattended cognitive underwater vehicle, which is an intermediate stage 
on the way towards our goal of a wholly autonomous (cognitive) underwater vehicle. The aim is to steadily 
push the dotted line to the top of the triangle, through improved reasoning and uncertainty handling processes. 
The causal reasoning process can be represented in terms of a decision ladder, consisting of a clear series of 
knowledge states, linked by processes which determine the flow between these states (a state flow 
representation). 
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Extending Cognitive Automation from Mission Control to Strategic Control
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Figure 5-33: Transition from Manned, through Current Unmanned,  
to Semi-Autonomous Underwater Vehicle. 

A general process of adaptiveness is shown in Figure 5.34. Such a state flow representation of a system is,  
in effect, a finite state machine representation of it and, therefore, by definition tractable. It can be 
characterised by the traditional measures from information theory (Kolmogorov Complexity [9], Fisher’s 
Information Measure [10], Shannon’s Negative Entropy [11], etc.).  
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Figure 5-34: Decision Ladder Framework for Task Decomposition. 

In particular, the aim is to minimise the Kolmogorov Complexity of the system representation. In effect, 
minimising this equates to an Occam’s Razor approach to decision making and problem resolution. This is 
defined as the shortest algorithm that fully represents the total information content of a given system.  
In practice, we will not have the full information content of the system (i.e., mission) and will be operating on 
a best approximation to that. This arises directly from the, at times considerable, uncertainty that may be 
present during the course of a mission and any resultant conflicts within the decision process. 

PACT (Policy for Authorising and Control of Tasks) provides a convenient system for identifying levels of 
autonomy in a system (Commanded; Assisted – At Call, Advisory, In Support, Direct Support; Automated). 
The system is one that has been applied at DERA previously for addressing decision aiding and support in the 
Cognitive Cockpit Programme [5,8]. The aim in improving the ability of an autonomous vehicle to handle 
higher level functions and tasks and environments with significant levels of uncertainty associated with them, 
can be expressed directly in terms of increasing the PACT level of tasks from that currently attainable.  
As an example, Figure 5.35 provides a possible PACT Contract Level diagram for a set of ‘typical’ tasks,  
in 4 groups, over a 6 phase mission for an intermediate type of autonomous underwater vehicle, as in  
Figure 5.35. Those tasks with a PACT level below 3 do not involve suggested courses of action from the 
vehicle for the human controller; they require direct initialisation by that controller. The PACT Scheme 
provides a useful tool in aiding this process, allowing a direct visualisation of the dynamically changing 
autonomy structures within the system. 
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Figure 5-35: Possible PACT Contract Levels for a UUV Mission. 

5.6.3.4 Multi-Agent System Representation 

Recent work addressing dynamically adaptive autonomy in multi-agent systems [12,13], puts forward a 
framework that permits agents to dynamically form, modify or dissolve goal-oriented problem solving groups. 
In particular, it enables these agents to do so in the presence of high levels of change and, ultimately, 
uncertainty. It provides them with the key ingredients that permit the transition from adaptability to adaptation 
– motivation and the ability to change the problem-solving framework of the system itself. 

In addition, [12] introduces the concept of the sensible agent, which participate in a two phase process prior to 
engaging in tasks, namely: 

1) A decision-making phase, during which sub-tasks designed to carry out the goal are identified and 
agreed upon; and  

2) A task allocation phase, during which the various agents are assigned actions and tasks, in accordance 
with the decisions made.  

The point is made that agents using any autonomy model must comprehend the concepts of ‘self’ and ‘others’. 
An example would be the sensor system processor cooperating with the navigation system processor to 
prevent the vehicle running aground or colliding with an obstacle. To achieve this, each agent must possess its 
own environmental model, such that it can understand the implications of the information it is receiving for 
any of the other agents and act accordingly. 
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A constrained version of this model can be applied to the case of multi-processor platforms, such as UUVs 
(e.g., Manta), where certain actions must, by definition, be performed by a particular agent (i.e., processor) 
and where there is a requirement for a single focus for enacting the overall mission plan. 

This is most conveniently achieved via the fact that UUVs normally possess a central, or main, processor, 
which can be permitted to act as arbiter in task assignment and decision-making in general, fulfilling, as such, 
the role of a local master.  

It can also, where operational conditions permit, facilitate the dissemination of relevant information between 
agents, to augment their common knowledge base (i.e., corporate knowledge). Moving beyond the level of the 
individual platform, within the context of Network Enabled Capability (NEC), this approach may easily be 
scaled so as to encompass cooperation among any number of unmanned platforms, in order to achieve a 
common mission objective. 

5.6.3.5 Autonomous Underwater Decision Making 

Dstl work has provided a simulation of key aspects of the core UUV functionality in an “unattended cognitive 
underwater vehicle” (UCUV) autonomy project. This work is intended to provide partial proof of concept 
demonstration of specific autonomous decision making activities by unmanned vehicles using a navigational 
exercise. This work is in its early stages of development and there is a long way to go to realise the ultimate 
aim of a wholly autonomous cognitive underwater vehicle. Figure 5.36 provides an overview of the various 
inputs and contributing components for this modelling process. 
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Figure 5-36: Tools and Techniques Drawn upon in the DSTL UCUV Work. 

The work on UCUV artificial intelligence engine development has two facets: 

1) The development of a knowledge based system for “inside-the-envelope” decision making [14]; and 

2) The development of a Bayesian based learning techniques for “outside-the-envelope” decision 
making [15].  

In order to capture a capability to handle ‘within the envelope’ higher level decision making (i.e., based on 
direct knowledge), a core knowledge base has been constructed to encompass a subset of the relevant drivers 
and principles involved [14]. Initial knowledge acquisition (KA) focussed on UUV navigating to a  
given target (identified by Rapidly Deployable Sonar) whilst avoiding charted objects en route.  
Using CommonKADS knowledge modelling methodology [16,17], further KA enabled knowledge models to 
be constructed, from which an intelligent routing application was specified, designed and implemented.  

In a fully autonomous system, without recourse to guidance from a human operator, all of the problems that 
may be encountered must be resolved on-board and an appropriate decision made in all cases. So, where the 
situation encountered lies ‘outside the envelope’ for this knowledge base, or where no clear cut decision can 
be made for some other reason, an alternative decision engine will be needed to apply to the process, to force 
the issue. 
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Based upon a survey of the relevant literature, a Bayesian learning based decision engine was decided upon 
for addressing these “out of envelope” situations [15]. This was adopted because of the inherent advantages of 
the approach over alternatives such as neural networks, for handling ‘out of the envelope’ situations, where a 
traditional expert system type approach is inapplicable. Of particular utility here is its’ robustness in the 
presence of high levels of uncertainty. An incremental variation on this approach, the Bayesian Agent, was 
also identified, which offers a capacity for both on-line and off-line learning [18].  

This survey also identified several priors of potential utility here. In order to evaluate these various options,  
a simulation exercise was conducted on narrow channel navigation scenarios for a simulated estuary 
environment.  

The work employed the MATLAB modelling environment since this permits a rigorous top-down design 
methodology to be applied to the construction of the model, for configuration/life-cycle management 
purposes. This system also permits the pull through into C code of the model components directly from the 
model itself. Stateflow is a part of the MATLAB suite, which allows the construction of block based models 
of finite state machines, through the Simulink dynamic simulation system. 

A stylised simulated estuarine environment (1000 m x 500 m x 25 m deep), populated with a rough terrain bed 
and traversed by a simulated narrow navigation channel, cut through the bed to the bottom, was chosen for 
reconstruction in simulation. 

As a result of an extensive literature search, two alternative Bayesian based approaches were selected for 
comparison (MML and BCPN). What does this mean? Naïve Bayesian learning was employed on the network 
as a control in the exercise. In addition, an initial investigation was made into the suitability of using an 
ARTMAP, What does this mean? neural network approach to selection of appropriate prior distributional 
forms for the system [19]. The problem that was posed to each of the Bayesian systems, was: Given the 
current direction of travel, provide the system with any changes of direction that are required, so as to 
maintain a course that is as close to the centre of the channel as possible, at all times.  

To, this end a 20 m by 20 m ‘window’ (i.e., the width of the channel) was used, to simulate a required 
clearway for safe passage of the craft through the channel. As our system has a 1 m grid size, with each of the 
mesh points representing the centre of a 1 m by 1 m by 1 m block, this translated itself into a 19 mesh point by  
19 mesh point grid, which was required to be maintained clear of solids. For this exercise, no obstacles were 
placed upon the bed of the channel. However, the trained classifier can be used with equal effectiveness upon 
the task of avoiding obstacles in the vertical direction. 

All three of the Bayesian learning network underpinned approaches investigated can provide, within certain 
limitations, a means of navigation through narrow, sinuous channels, through the provision of suitable course 
corrections. The introduction of signal degradation does impact on the performance of all three approaches, 
but not catastrophically so (graceful degradation). By limiting the required course corrections required to the 
range of +/- 3 (1 m) grid points per correction, the errors in the corrections supplied all lie with the range of 
+/- 1 grid point (rounded) after 10 training scenarios, even for relatively noisy data ([0.0,0.4] for 0.0, [0.6,1.0] 
for 1.0). Due to the much higher computational requirements for the MML approach, coupled with it not 
providing superior performance to either of the other 2 approaches, it is not considered to be suitable for use 
for such a task. 

The use of an ARTMAP based classifier to select the most appropriate prior form for the nodes in a Bayesian 
network shows some initial promise. Its use in such a role requires further investigation though. 
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The BCPNN based approach [20,21] was recommended for pull through into native C code for further testing 
against a scenario based on real GIS data. This was trained on the training data set, with applied noise levels 
giving up to 80% reduction in signal separation between land and water, which was that applied to the signals 
for this test. It was then applied to a compressed section of the Columbia River, providing a tortuous path, 
with frequent narrowing and shallowing to below the 20 m diameter of the training data channels. This test 
was successful, with the course followed being within 1 m of the mid line (i.e., 1 grid point). 

Overall, the test of the BCPNN approach on real data, based on a section of the Columbia River,  
with significant ‘out of the envelope’ behaviour, in terms of narrowing and shallowing, was a success.  
This shows the robustness of the Bayesian approach itself and also significant promise for the application of 
the ‘abstract and simplify’ approach adopted here, in the context of noisy (to 80%), information-poor 
environments. 

The task was extremely challenging since this was a new domain for the application of Bayesian based 
decision making methods. The methodology is widely applicable, rather than domain dependent.  

The overall aim of the work was to provide an initial investigation to provide proof of concept of decision 
making in support of autonomous UUV operation. This has been accomplished successfully, albeit in a 
limited way. The project needs to explore and illustrate the use of the developed methodology on a wider 
subset of the potential problem set.  

5.6.3.6 Conclusions 

The demonstration of the robust applicability of the principles and approach adopted, to the solution of 
realistic and relevant problems, certainly indicates its potential worth. This work is innovative in its very 
nature, particularly within the field of autonomous decision making for unmanned vehicles. It forms an 
exploration of the possible. However, it is an exploration based firmly on sound mathematical and statistical 
principles. There is a need to investigate the application of the approach and implemented algorithms to other 
important noisy and/or information poor decision situations, within the context of projected UUV operational 
scenarios. Ultimately there is a need to address higher-level decision making tasks in order to provide an 
integration and a synthesis of the processes, especially within the context of the future network enabled 
environment. 
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