

RTO-TR-IST-030 5 - 1

Chapter 5 – MIDDLEWARE ISSUES

For the purpose of this report1, middleware can be thought of as software providing a set of enabling services
that reside between applications and the underlying operating systems, network protocol stacks and hardware.
Middleware allows multiple processes running on one or more hosts to interact transparently across a network
and can also enable and simplify integration of heterogeneous software and hardware components.

In the descriptions which follow, the term ‘server’ always refers to a piece of software offering a service to a
client. A ‘client’ is consequently a software application or component using that service. Usually, a computer
has both client and server components. Often a server uses other services and thus acts itself as a client of the
server(s) providing those services. An example of such software is a file viewer for, e.g., a word processor
format. For embedded graphics this viewer might use the service of a graphic rendering server while at the
same time offering rendering services to the network. For programmes that have to display the word processor
format it would act as a server while at the same time behaving as a client of the graphics viewer.

The term “application” (without any qualifier) is used in this chapter for any piece of software that accesses
the services offered by the middleware.

5.1 MIDDLEWARE CATEGORIES

According to [7], middleware can be divided into different categories based upon the intended domain of
application. The most important categories are:

• Transactional middleware;

• Message-oriented middleware;

• Procedural middleware; and

• (Distributed) Object or component oriented middleware.

These categories will be briefly described in the sections which follow.

5.1.1 Transactional Middleware
Transactional middleware offers the functionality associated with replication of database transactions
described in the previous chapter. For synchronous data replication, a replicated transaction is either executed
completely at all participating nodes or not at all. This requires a two-phase commit protocol where all nodes
confirm to the initiating (master) node that the transactional information has been successfully received and
that the transactions can be executed. Once these confirmations have been received by the master node, it tells
the other nodes to commit the transaction and make it final. If at least one node indicates that it did not
completely receive the transaction or that it cannot execute the transaction, the master node tells all nodes to
do a rollback and not to apply any changes indicated in the transaction.

In a bandwidth-constrained environment, as noted in the previous chapter use of such a protocol generates
such a significant communication overhead that it can seriously impede throughput of operational data. In this
case, asynchronous replication is employed. Under asynchronous replication the transaction(s) are applied to

1 It is important to note that no generally agreed-upon definition of the term “middleware” exists.

MIDDLEWARE ISSUES

5 - 2 RTO-TR-IST-030

the source database before being replicated. Replicated transactions are applied to the replicate databases
sometime after they are applied to the source database.

A prominent example of transactional middleware in the military domain is the ATCCIS Replication
Mechanism (ARM). The ARM is a specification for an asynchronous replication mechanism that will permit
interoperability of automated C2ISs through the partial replication of database content. The ARM is selective
in:

a) The data to be exchanged;

b) The recipients of the data; and

c) The transfer facility to be used.

For more information on ATCCIS, ARM and selective vs. all-informed replication, see Section 4.2.2.5.

5.1.2 Message-Oriented Middleware
In message-oriented middleware, a client sends an asynchronous message containing a request and all meta-
data such as authentication information to a server. The server processes the request and sends the results
(or errors) in an (equally asynchronous) message back to the client. While it is possible to access local
services using this type of middleware, it is mainly targeted at the (asynchronous) access to remote resources.

Message-oriented middleware is thus a form of asynchronous communication as described in Section 4.2.1.1,
while the other classes described here are synchronous. Nevertheless, it is important to note, this does not
necessarily require that the applications using the middleware be of the same nature. Due to the layered
architecture (business application, middleware, network, …), it is possible to build an application
communicating synchronously on top of a message-oriented (and thus asynchronous) middleware and vice
versa.2

The disadvantage of message-oriented middleware is that, in general, it is implemented using a centralized
server. This introduces a single point of failure. In domains featuring high bandwidth and reliable
communication links, the risks associated with a single point of failure can be reduced through use of
redundancy (e.g., a backup server). In disadvantaged environments, the very limited capacity of the
communication links may not allow for fully redundant backup making this issue even more critical.

Decentralized versions of message-oriented middleware do exist, but the scalability is undetermined.
All message oriented systems known to the authors also support multicast.

Examples of message-oriented middleware include JMS (Java Message Service), TIBCO RendezvousTM3,
publish/subscribe or synchronous message queues (or both), CORBA event notifications and other event
notification systems, e.g., JXTA (Juxtapose) and Jini.

5.1.3 Procedural Middleware
Procedural middleware implements the concepts of remote procedure calls: the client initiates a procedure or
function call on the server and receives the results in a similar manner. This is a synchronous system and

2 This is not to say that such a combination would make sense. As a rule a synchronous application should use synchronous
middleware and an asynchronous application should use asynchronous middleware.

3 Messaging software product supplied by TIBCO Software Inc.

MIDDLEWARE ISSUES

RTO-TR-IST-030 5 - 3

designed for the access to remote resources. The primary example of procedural middleware is DCE (Distributed
Computing Environment) [8].

Procedural middleware requires that the calling function receive an answer before control is released back to
the calling programme. This limitation means that procedural middleware is not favoured for disadvantaged
computing environments especially when timeliness is an important aspect of performance. An important
example for such an environment is the military tactical wireless domain.

5.1.4 Object and Distributed Object (Component) Middleware
Distributed object (or component) oriented middleware is based on the concepts of the object-oriented software
development paradigm. One of the objectives is to allow transparent (and synchronous) communication to local
and remote components while always using the most efficient transport mechanism.

Objects are the primitive elements of object-oriented programming. Objects are entities that encapsulate both the
data describing the object and the instructions operating on those data. Distributed objects are packaged as
independent pieces of code that can reside anywhere on a network and can be accessed by remote clients via
method invocations. Components are standalone entities that can interact and interoperate across networks,
applications, languages, tools and operating systems. Distributed objects are components, but not all components
need be objects.

There are many examples of object and distributed-object middleware. These include: Object Management
Group’s CORBA (Common Object Request Broker Architecture) and CCM (CORBA Component Model),
Microsoft’s DCOM (Distributed Component Object Model), SUN’s Enterprise Java Beans, Jini, JXTA
(Juxtapose), Web Services, Agent technologies, .NET, OGSA (Open Grid Services Architecture), RMI (Remote
Method Invocation) and P2PS (Peer-to-Peer System).

The advantages that distributed-object middleware can offer to the disadvantaged environment come at a
price. Distributed-object middleware has significant network communication overhead required to support
features such as the sharing of context data, object and service discovery, and the brokering of inter-object
calls within multiple processes running across networks. In the tactical wireless domain where data throughput
can be as low as 1 kilobit per second, such overhead can leave little or no network bandwidth available for
transmission of real operational data. Thus, performance considerations may continue to inhibit widespread
use of distributed-object middleware in disadvantaged environments and real-time systems. Efforts such as
Real-Time CORBA (RTCORBA) [9] and minimumCORBA [10] are attempting to address this issue.
However, until distributed-object middleware adequately addresses the issue, the limitation that it places on
performance (effective throughput) due to its demands on the communication network may limit its use in the
tactical wireless domain.

5.2 TRADITIONAL MIDDLEWARE REQUIREMENTS
There are five types of requirements addressed by traditional middleware solutions [7]. These are: network
communication, coordination, reliability, scalability and heterogeneity. Each of these traditional requirements
is discussed in turn.

5.2.1 Network Communication
All types of middleware described in the previous section allow access to resources on remote systems.
To achieve this, they have to employ network communication. Depending on the type of middleware the

MIDDLEWARE ISSUES

5 - 4 RTO-TR-IST-030

nature of the communication is hidden from the application to a greater or lesser extent. While component
middleware completely hides the communication technologies from the application, the others only abstract to
a certain degree or not at all.

5.2.2 Coordination
Beside the basic (network or local) communication between client and server, some degree of coordination is
required. All types of middleware discussed offer this functionality to the extent required by the implemented
paradigm. Message oriented middleware has the lowest requirements for coordination, because it works
completely asynchronously. Transactional middleware on the other hand requires strict coordination to ensure
the transactional character of its operation.

5.2.3 Reliability
Middleware is often deployed in mission-critical processes. This requires a high degree of reliability, which
has always been an objective in the design and implementation of middleware systems.

5.2.4 Scalability
One central objective especially of component-oriented middleware is the abstraction from the actual location
where a service resides. For the client it should not make a difference (at least not more than absolutely
necessary) whether the service is located on the local machine, the local area network (LAN) or on a different
continent. To achieve this, the middleware must scale arbitrarily in both directions: The smallest situation in
which it must work is an isolated node without network connection, the largest a collaboration of nodes all
over the globe.

5.2.5 Heterogeneity
While some middleware systems such as DCOM are limited to a single hardware or software platform, most
systems have been designed to function in heterogeneous environments. One of their objectives has been to
integrate different hardware and software platforms into a single environment. To a lesser extent this is as well
true for different communication technologies such as network protocols or local communication mechanisms
such as pipes or signals.

5.3 NEXT GENERATION MIDDLEWARE REQUIREMENTS

To overcome some of the limitations of existing middleware solutions and to increase the range of
applicability of middleware, next-generation middleware will have to satisfy one or more of the following
requirements: dynamic reconfiguration, adaptivity, context-awareness, asynchronous communication and
lightweight design. Each of these requirements is discussed in turn.

5.3.1 Dynamic Reconfiguration
Next-generation middleware should be able to detect changes in available resources and to reallocate remaining
resources, or to notify the application to change its behaviour. For example, interruptions that occur when servers
are disconnected (e.g., because they are powered down or because they get out of range in a wireless
environment) should be minimized and should not require manual intervention of the user. The middleware
should search for an alternative server or combination of servers and continue to operate transparently.

MIDDLEWARE ISSUES

RTO-TR-IST-030 5 - 5

5.3.2 Context Awareness
Next-generation middleware should serve as a mediator for collecting, organizing, and disseminating relevant
context information to the upper layers (application) and lower layers (transport mechanisms). The context
may include device or network characteristics, user activities and services.

To fulfil this role, the middleware should maintain a shared perception of network state [11]. In order to do so,
it needs regular feedback from the underlying transport mechanisms on the network state, for example: link
quality (speed and BER), transmit power (at local and remote nodes), and residual energy at the nodes. If the
network does not provide this kind of information, the middleware must try to obtain it by doing its own
measurements.

Each node on a radio net is autonomous and has its own unique perception of the performance of the radio net
based upon its own experience interacting with other nodes on the network. A node hidden from the other
nodes behind a hill may encounter communication difficulties that provide it with a totally different
perception of network performance than the perception held by the remaining nodes, which are within line of
sight of each other. In order to develop a shared perception of network state, it is necessary that each node on
a radio net agree to share its local perception of network performance with the other nodes on the subnet at
regular intervals (exploiting the shared radio medium). Development of local perception of network
performance, sharing of that perception, and synthesis of a common view of network performance is best
handled as a service provided through middleware residing on local nodes but collaborating with middleware
on other nodes. The middleware should make this context information continuously or periodically available
to the local application.

As well, next-generation middleware should maintain a shared perception of its own state. For example, for
replication middleware, a data provider needs to know which nodes are available at any time as data receivers.
This common information should be shared among all data provider nodes.

5.3.3 Adaptivity
Next generation middleware should have the ability to:

1) Recognize changes to its execution context and to adapt its behaviour to the changes in execution
context; and

2) Recognize unmet needs within its execution context and to adapt itself to meet those needs.

An example of the first type of adaptivity would be an adjustment of middleware services provided to an
application (e.g., reduction in frame rates for a real-time video streaming application) based on middleware
awareness of reduced network throughput. An example of the second type of adaptivity would be automatic
server reconfiguration described in Section 5.3.1.

5.3.4 Lightweight Design
Next generation middleware that will be effective in the tactical wireless domain should feature a lightweight
design that minimizes demand on the network and implements a minimum range of functionality.
The requirement for minimum functionality is most important for nodes with limited memory, storage
capacity and processing power. Such nodes are usually man-portable nodes or sensor nodes powered by
battery, where the minimum functionality can also serve the important goal of energy conservation.

MIDDLEWARE ISSUES

5 - 6 RTO-TR-IST-030

5.3.5 Asynchronous Communication
As noted in Section 4.2.1.1, communication is described as ‘asynchronous’ when no (immediate)
acknowledgement is sent back to the sender and/or the sender and receiver engage in the communication at
different times.

Next generation middleware employing a client-server architecture should decouple the client and server
components and use multicast communications where appropriate. The decoupling of client request and server
response is particularly important in the tactical wireless domain where nodes may connect and disconnect
from the network at unpredictable times and network access and latency are issues.

The disadvantage of introducing a single point of failure through use of a central server is discussed in Section
5.1.2.

5.4 MIDDLEWARE REQUIREMENTS FOR WIRED VS. WIRELESS DOMAINS

Military operations require use of more than one type of communications network. On the strategic and
operational level, networks using reliable high-bandwidth communication links are normal, while in the tactical
domain, disadvantaged networks and network nodes are common. Armies have a need to share information,
services, functionality and, in some cases applications, across both domains. Middleware to support such sharing
must be capable of functioning and providing services in both communications environments. This section
examines design considerations for middleware to function effectively in both environments.

5.4.1 Differences between Wired Networks and Wireless Ad Hoc Networks
This topic is discussed in detail in Section 6.2. The primary differences result from the lack of an
infrastructure for ad hoc networks. In fully connected wireless LANs, since there is single-hop connectivity
among all the nodes, routing is not an issue. However, in ad hoc wireless networks it is possible to establish a
link between any pair of nodes, provided that the signal-to-noise ratio at the receiving node is sufficiently
high. Unlike the case of wired networks, the set of network links and their capacities are not determined a
priori, but depend on factors such as distance between nodes, transmitted power, error-control schemes, other-
user interference, and background noise.

Current civilian wireless technologies offer rather reliable links with relatively high data rates (>1 Mbit/s).
Therefore, similar if not identical middleware technologies can be applied in both the wired and wireless
domain. In the military tactical domain on the other hand, unreliable links with very low data rates are normal
(16 – 64 Kbit/s at the physical layer; can be as low as 1 Kbit/s at the application layer). Additionally, these
links may be subject to enemy interference. Middleware that is not designed specifically to adapt to the
varying network topology and link capacity in the disadvantaged tactical wireless domain is not likely to
function effectively in this domain.

5.4.2 Resource Limitations
In addition to the network limitations, there may be resource limitations at the nodes in the tactical domain. In
a battalion or company command post, nodes may have sufficient computational resources and more than
adequate energy, memory and storage space. Dismounted units may have only Personal Digital Assistants
where all of these factors are strictly limited. Middleware designed for the disadvantaged environment must
therefore scale to both kinds of nodes. This means that it must be possible to deploy only a subset of the
middleware functionality in the smaller devices without losing interoperability.

MIDDLEWARE ISSUES

RTO-TR-IST-030 5 - 7

5.4.3 Important Middleware Design Considerations

Each of the five requirements for next generation middleware identified in Section 5.3 are important for
middleware to function well in both the non-disadvantaged and disadvantaged communications environment.
In addition, the following design considerations are considered important.

5.4.3.1 Upperware and Lowerware
An important function of most middleware is to provide services to the application. These services can include
meta-services such as a discovery or lookup service or services targeted at a special task. Examples of the
latter are a VoIP service, a database replication service or a service providing track information such as sonar
or radar. A discovery service is a service that gathers information about the available services on a network;
such information is usually made available through a lookup service.

It can be useful to consider middleware as being divided into layers dubbed ‘upperware’ and ‘lowerware’. The
‘upperware’ contains the services directly accessible by the application, as described in the preceding
paragraph. The primary purpose of the ‘lowerware’ is to provide a connection for these services to the
underlying system and the network. With such a scheme it is possible in principle to hide in the lowerware
many of the adaptations required by a transition from a non-disadvantaged to a disadvantaged environment.
The problem of designing upperware (and consequently the applications using it) to function in both
communication environments can be considerably simplified.

An additional advantage of this internal layering of the middleware is that it allows the application and the
network technologies to evolve at different rates. In particular, it may be possible to adapt the lowerware to
take advantage of new network and communication technologies while maintaining a relatively stable
interface between the upperware and the application.

5.4.3.2 Abstraction vs. Transparency
A decision must be made as to how much of the underlying network to abstract and how much to pass through
to the application. An important example where this may prove critical is the multicast4 network service.
Usually non-disadvantaged networks do not offer multicast as it would not provide much advantage over a
unicast service. The disadvantaged environment on the other hand usually employs a shared medium where
bandwidth is at a premium and a multicast service offers a distinct advantage. It must thus be decided how to
design middleware that can provide the service appropriate to each environment. Given the separation of
middleware into upperware and lowerware a possible solution could be that the upperware offer a multicast
service to the application (broadcast being a special case of multicast). The lowerware could implement this
functionality in different ways for different environments: In a broadcast domain it could send multicast
transmissions as multicast or broadcast over the shared medium, whereas in wired environments unicast
transmissions could be used.

5.5 SUMMARY AND CONCLUSIONS
This chapter has examined the implications for the design of middleware targeted at the deployment in
disadvantaged grids. Middleware for the disadvantaged environment has special requirements not present in

4 Multicast refers to a data transmission that is addressed to several recipients at once while unicast transmissions are addressed only
to one specific recipient. A multicast transmission in a shared medium like radio can be picked up by all intended recipients within
range of the sender with only one transmission instead of one transmission per recipient. In a wired environment on the other hand
a transmission can only be received by the network node at the other end of the wire. This reduces the advantages of multicast
somewhat.

MIDDLEWARE ISSUES

5 - 8 RTO-TR-IST-030

the wired domain. These special requirements derive primarily from limitations of available energy at the
nodes as well as very limited and unpredictable bandwidth and unreliable connectivity to the network.
To design middleware that can operate effectively in this environment, these constraints must be respected
throughout the design process. At the same time it is imperative to remember that the same middleware may
be deployed in non-disadvantaged environments such as command posts. Middleware designed only for the
non-disadvantaged environment may not operate efficiently in a disadvantaged environment, and vice versa.
It is necessary to design middleware from the beginning for both environments where good performance in
both environments is required.

In dedicated C2 networks where all participating nodes run only the C2 applications the middleware is often
implemented as an integral part of the overall C2 system sitting on top of the network. Nevertheless it can be
assumed that the functionality is present and the conclusions from this chapter are applicable.

	Chapter 5 – MIDDLEWARE ISSUES
	5.1 MIDDLEWARE CATEGORIES
	5.1.1 Transactional Middleware
	5.1.2 Message-Oriented Middleware
	5.1.3 Procedural Middleware
	5.1.4 Object and Distributed Object (Component) Middleware

	5.2 TRADITIONAL MIDDLEWARE REQUIREMENTS
	5.2.1 Network Communication
	5.2.2 Coordination
	5.2.3 Reliability
	5.2.4 Scalability
	5.2.5 Heterogeneity

	5.3 NEXT GENERATION MIDDLEWARE REQUIREMENTS
	5.3.1 Dynamic Reconfiguration
	5.3.2 Context Awareness
	5.3.3 Adaptivity
	5.3.4 Lightweight Design
	5.3.5 Asynchronous Communication

	5.4 MIDDLEWARE REQUIREMENTS FOR WIRED VS. WIRELESS DOMAINS
	5.4.1 Differences between Wired Networks and Wireless Ad Hoc Networks
	5.4.2 Resource Limitations
	5.4.3 Important Middleware Design Considerations

	5.5 SUMMARY AND CONCLUSIONS

