

RTO-TR-IST-031 4 - 1

Chapter 4 – EXPERIMENTAL RESULTS

4.1 INTRODUCTION

The presence of multilingual and non-native speech complicates the task faced by those who wish to apply
automatic speech processing technology to military applications. Most automatic speech processing
algorithms (e.g., speech recognition, speaker recognition, language recognition) operate in two phases. During
the training phase, models are created from labeled training speech utterances using statistical method. During
the recognition phase, the models built during training are used to hypothesize the words (or speaker,
or language, etc.) of a new test utterance. Mismatched situations in which the training speech and test speech
are spoken in different languages, or in which the training speech is spoken by native speakers but the test
speech is spoken by non-native speakers, typically cause a degradation in performance of automatic speech
processing systems vs. the performance obtained when only single-language, native speech is processed.
Degradation can also be caused by the increased rate of disfluencies and other similar errors made by non-
native speakers.

As part of the NATO Speech in Realistic Battlefield Environments Project, one of the speech corpora
collected, labelled and distributed allows researchers to measure the effectiveness of speech processing
systems on multilingual and non-native speech in a military battlefield environment. The nnMATC corpus,
collected by Belgium, contains primarily English speech spoken by both native and non-native speakers
(see Section 2.3.4).

The rest of this chapter of the report describes experiments performed on the nnMATC corpora. These
experiments showed the impact of multilingual and non-native speech on speech recognition, speaker
recognition and language recognition performance. In some cases, the effect on recognition accuracy was
modest. In other cases, it was moderate or severe.

4.2 THE IMPACT OF BATTLEFIELD SPEECH

Multilingual and non-native speech impacts the performance of speech processing systems in a variety of
ways.

4.2.1 Impact on Speech Recognition
Many hundreds of hours of transcribed training speech can be required to train acoustic and language models
for speech recognition. When it is likely that non-native speech will be encountered during recognition, and
when little non-native speech is available for training, a dilemma is faced: is it better to train on a small
amount of non-native speech to avoid a training/testing mismatch but incur the penalty of poorly trained
models, or is it better to use large amounts of native speech yielding well-trained, but mismatched, models.
Depending on the circumstances, it may also be possible to adapt the well-trained native models to the non-
native speech, to use acoustic models from one language to perform speech recognition in another, or to use
multilingual acoustic models.

4.2.2 Impact on Speaker Recognition
Most conventional speaker recognition systems hypothesize the speaker of an utterance through extraction of
features from the speech signal that is related to the speaker’s vocal tract shape. To the extent that many

EXPERIMENTAL RESULTS

4 - 2 RTO-TR-IST-031

languages share a common set of sounds and to the extent that speakers of one language have vocal tracts that
are generally similar to speakers of another language, one might predict a priori that the complexities of
multilingual and non-native speech would have a less severe impact on speaker recognition vs. speech
recognition. But other factors such as speaking rate, phone frequency of occurrence, hesitations, etc. could
cause multilingual and non-native speaker recognition performance to degrade relative to performance on
single-language, native speech.

4.2.3 Impact on Entity Recognition
Language identification systems use both acoustic and phonetic measurements to hypothesize the language of
a speech utterance. Just as in the case of speech recognition, one would expect non-native speech to degrade
performance vs. native speech because of acoustic and language-model mismatches.

4.3 SPEECH RECOGNITION EXPERIMENTS ON THE NNMATC CORPUS

The ATC speech corpus consists of audio data collected in Belgium during NATO pilot training exercises to
and from various sites. The speech data includes interactions between pilot and tower during “taxi”,
“transition” and “approach” flight sequences. The speech is heavily accented English in a high noise
environment which poses a challenging problem for existing speech technologies.

A total of 12 hours of ATC data was collected by Stephane Pigeon of the Belgian Royal Military Academy.
The data was then transcribed and segmented by hand so that it could be used to train and evaluate an
automatic speech recognition system. Unfortunately, the transcription process was not complete and there
were a few issues that needed to be addressed in order for the transcriptions to be useful for ASR.

One problem was an inconsistency in the lexicon of words used for transcribing the data. The heavily
accented speech, foreign location names and ATC specific jargon made this a difficult task for the
transcribers. The problem had to be addressed in order to create a pronunciation dictionary (a prerequisite for
building an ASR system). Table 1 below gives some examples of the types of lexical errors that were found
during this process.

Table 1: Lexical Transcription Errors

BROGEL BALEN KOKSIJDE

BROEGEL

BROGO

BROHO

BROKEL

BRUGHEL

BAHLEN

BALEM

BALLEM

COOKSIDE

COXSIDE

The other more significant problem (and the one which required the most work to address) was the manual
segmentation. The time alignments provided with the manual transcriptions were in many cases far from

EXPERIMENTAL RESULTS

RTO-TR-IST-031 4 - 3

accurate. The situation was addressed by training a small “boot-strap” recognizer on a trusted sub-set of the
data, and then using it to decode the remaining data set. Then the transcriptions generated by the recognizer
were compared to the manual transcriptions and a segmentation was created using the recognizer time
alignments when the two transcriptions matched at an utterance boundary. The rough segmentation created by
this process was used to train a new model and the process was repeated. The overall result was to bring the
error rate down from 63.3% to 52.4% (on a small subset) in addition to creating a useful segmentation of the
remaining data.

The 12 hours of ATC data was partitioned into approximately 10 hours of training data with the remaining
data split into two test sets (see Table 2).

Table 2: ATC Data Partitions

Subset Duration

Train 9.8 hours

Dev 40 minutes

Test 26 minutes

4.3.1 Evaluation using HTK and Sphinx Recognizers
Speech recognition has developed rapidly in the last few years. However, robustness is one of the main attributes
that ASR systems lack. Current systems are still far from performing well under noisy environments (such as
inside a car, out in the street, etc.). Here we present the results obtained when using Sphinx and HTK to decode
the nnMATC corpus. Both of them are state-of-the-art HMM-based systems and are freely available.

4.3.1.1 Sphinx

The latest version of Sphinx 3 available (namely 3.6.3) has been used to perform our experiments [1]. It is
composed of two modules: SphinxTrain [2] and Sphinx decoder [3]. The former can be used to create and
train HMM based acoustic models. It also includes a front-end analysis module, which can be used to
calculate the MFCCs from any given signal. The latter carries out the decoding of any given speech utterance,
for which it uses the acoustic models trained by SphinxTrain.

4.3.1.2 SphinxTrain

Every ASR system needs to learn about the sounds that need to be decoded. First of all, the speech signal
needs to be represented in a way that its phonetic properties are emphasized. In Sphinx, this is done by means
of wave2feat, which computes the MFCCs from any given speech signal. Dynamic features (such as delta and
delta-delta) are also automatically used, but they are not user configurable.

After the feature files are obtained, they can be used to train the acoustic models. Sphinx uses HMMs to
characterize all the triphones that appear in the training corpus. Of course, things will become unmanageable if
we assign a different HMM to every single triphone. In order to solve this problem, state sharing is applied.
Similar states from different HMMs are grouped into a set, which is called senone. All the states belonging to a

EXPERIMENTAL RESULTS

4 - 4 RTO-TR-IST-031

senone share the same probability distribution. The amount of tying applied is user defined. The sphinx_train.cfg
file sets the value of many of the training parameters, such as the number of states per HMM, the number of
Gaussian mixtures used to model each senone, etc.

4.3.1.3 Force Alignment

In languages like English it is very common to find that the same word can be pronounced in several different
ways. The dictionary file in Sphinx is allowed to have several entries for the same word. However, for the
system to work properly, the transcription file must state which pronunciation alternative is used for each
word. Sphinx provides a way to do this automatically, which is called forced alignment. We have used it to
modify the transcription files provided by the MIT.

In order to use the forced alignment module, context independent models are trained using the original
transcription (i.e., triphones are not created and only monophones are created at this step). Once these models are
trained, the forced alignment script can be used to create a new set of transcription files. These will show, after
each word, the pronunciation alternative used. Finally, these corrected transcriptions must be used to re-train the
system. Of course, this time triphones will be created and they will be trained using the training corpus.

4.3.1.4 Sphinx 3 Decoder

The Sphinx decoder was used to recognize the test corpus. It uses models trained in prior steps and computes the
most probable sequence of words associated with each utterance. To keep things manageable, the less probable
HMMs are continuously being discarded during decoding. This approach is called pruning. The amount of
pruning applied, among many others parameters, can be configured by means of the sphinx_decode.cfg file,
as was done in SphinxTrain. After it ends, the user gets a hypothesis about what is said in each utterance of the
test corpus. In order to get a measure of the performance of our system, this hypothesis can be compared to the
transcription file. We have used the sclite for this task, which is part of the NIST’s scoring package. It gets both
the transcription (or reference) and hypothesis files as inputs, compares them, and calculates the word error rate
achieved by the decoder.

4.3.1.5 Language Models

Speech recognition can be seen as the task of estimating a maximum a posteriori probability. Given any set of
feature files, the system must obtain the most probable sequence of words associated to it. Any sequence of
words may be generated by the acoustic models, even some that don’t make sense, contain grammatical errors,
etc.

The purpose of the language model is to make effective use of linguistic constraints when computing the
probability of the different possible word sequences. For this task, we have used a trigram based language
model, which has been created using the CMU-Cambridge Statistical Language Modeling Toolkit. These
models assume that the probability of any word in the sequence depends only on the previous two words.
In order to properly describe the kind of language used by both the pilots and the air controllers, our model
has been created from the transcription for both the train and test utterances.

4.3.1.6 Results Obtained

The best WER value that we have been able to achieve is 36.2% when decoding the test corpus. To obtain this
value, we trained our acoustic models keeping in mind that a word may be pronounced in several different ways.
The transcription of every utterance in the training corpus was modified using the forced aligner, and then

EXPERIMENTAL RESULTS

RTO-TR-IST-031 4 - 5

triphone HMMs models were created from this data. Finally, these models were used to decode the test corpus.
Both training and decoding configuration parameters and their values are described in [4]. It should be noted that
if the original transcriptions are used (i.e., those not forced aligned), then the WER value dramatically increases
to about 45%.

4.3.1.7 HTK

HTK [5] has also been used to decode the nnMATC database. The best WER value achieved is 59.60%.
We tried to configure HTK using the very same parameters described for Sphinx, so as to be able to benchmark
the performance of both systems. However, two problems arose. First of all, we were not able to create and train
triphones in HTK, so models were created only for monophones. Secondly, HTK doesn’t seem to be able to
handle trigram language models, a bigram based language model was used instead.

4.3.2 Evaluation using DGA Recognizer

4.3.2.1 Experiment Descriptions

4.3.2.1.1 Pre-Processing Step

In order to fit the DGA ASR (Automatic Speech Recognition) system input requirement, the audio data
sampling rate was converted to 8 kHz.

4.3.2.1.2 System 1

The first system tested was the DGA ASR English CTS (Conversational Telephone Speech) system without
any adaptation or modification.

The different steps of that ASR system consist of:

• Feature extraction of the audio signal;

• Speech detection;

• Speaker segmentation and sex recognition;

• First decoding using a 3-gram language model and a 48 phone set;

• Vocal track length normalisation to reduce inter-speaker differences;

• Phone set pruning to 40 phones to ease speaker adaptation;

• Speaker adaptation of the acoustic model;

• Second decoding using a 3-gram language model and the 40 phone set; and

• Re-scoring using a 4-gram language model and the 40 phone set.

That baseline system obtained a 105.5 % WER (Word Error Rate) result on the dev set.

4.3.2.1.3 System 2

System 2 was a modification of system 1. Its language model was replaced by a 3-gram model built from the
nnMATC train set thanks to the HTK toolkit and was provided by the MIT LL.

EXPERIMENTAL RESULTS

4 - 6 RTO-TR-IST-031

Also, its vocabulary was replaced by a vocabulary built (and provided) by MIT LL from the nnMATC train
set.

Due to the fact that there is no BEEP model in the DGA system phone set, the [BEEP] annotations were
removed from the reference annotation files in the test set. That removal reduced the WER by 0.5 % absolute
on the dev set.

Also, it appeared that the filler words (ex: um, oh, uh, ah, ooh,…) used in the reference annotation files were
not well normalized and consequently were causing errors. Consequently, they were also removed from the
test set and that removal reduced the WER by 0.7 % absolute.

Thanks to those modifications, system 2 got a 67.5 % WER result on the dev set.

4.3.2.1.4 System 3

Basically, system 3 was the same as system 2 except that its language model was a 3-gram for the decoding
phase and a 4-gram for the rescoring phase. Those models were built from the training data using the SRI
Language Model Toolkit.

Thanks to that refined language model, system 3 got a 66.5% WER on the dev set which is a 1.2% absolute
improvement compared to system 2.

4.3.2.1.5 System 4

Basically, system 4 was the same than system 3 except that the vocabulary used was taken from the DGA
baseline system (system 1) which wasn’t obtained from the nnMATC training data but from CTS data.

Furthermore, in order to reduce the OOVs (Out Of Vocabulary) words which are the words that are present in
the nnMATC database but that are not known by the ASR system, a post-process replacement of the most
frequent OOVs words in the database was applied on the ASR outputs. Those replacements reduced the WER
by 1.0 % absolute.

Thanks to those modifications system 4 obtained a 65.2 % WER result on the dev set, which is a 1.3 %
absolute improvement, compared to system 3.

4.3.2.1.6 Rover

The aim of that experiment was to fuse the 2 best ASR systems built (Sys 3 and Sys 4) which only differed in
terms of vocabulary to check to what extent they were complementary.

The tool used to do that ROVER experiment was Sclite, and the alignment method used was the ‘oracle’ one,
which means that Sclite always chose the best output of the fused ASR systems.

The score of that ROVER experiment is 58.0 % WER on the dev set which is 7.2 % better than the best single
system.

4.3.2.2 Results Summary

Table 3 contains a summary of results obtained by the different systems when scored on the dev and test set.

EXPERIMENTAL RESULTS

RTO-TR-IST-031 4 - 7

Table 3: DGA Word Error Rates on Test Partitions

ASR Systems Dev Set Test Set

Sys 1: DGA baseline system 105.5 % 93.9 %

Sys 2: MIT lm + MIT voc 67.5 % 60.3 %

Sys 3: nnMATC lm + MIT voc 66.5 % 58.7 %

Sys 4: nnMATC lm + DGA voc 65.2 % 58.5 %

Rover (Sys 3 + Sys 4) 58.0 % 50.1 %

From this table, it appears that on the test set the systems are better than on the dev set. The reason for such
differences is that in the test set annotation files, some segments contained speech that was not annotated as
speech segments. Those segments resulted in a lot of insertion word errors when evaluated with Sclite. In order
to prevent those segments penalizing the scores, DGA decided to remove them from the test set. As that work of
excluding non-annotated speech segments was only done on the test set, the ASR systems scored better on that
set.

4.3.2.3 Improvements

As the present experiments were only focused on language models and vocabulary aspects, an improvement
would be to build a new acoustic model from the nnMATC train set. More specifically, as pilots and
controllers speech are quite different acoustically and lexically, it might be interesting to build a segmentation
model in order to differentiate them and then to build models (acoustic and language) for each of them.

Another improvement, which is very classical in speech processing, would simply consist in increasing the
quantity of training data.

4.3.3 Evaluation using VOGON Recognizer
The ASR system used in these experiments is the Lincoln Labs “Vogon” system using non-cross-word
triphone state clustered Gaussian mixtures (with a maximum of 12 Gaussians per state cluster). The system
used gender independent models without speaker adaptation. A Vogon system was trained with 2048 state
clusters and a closed vocabulary trigram model was created from the training data. The performance of the
ASR system was between 52% and 54% WER on the two test sets (see Table 4).

Table 4: VOGON Word Error Rate on Test Partitions

Test Set WER

Dev 52.7

Test 53.4

EXPERIMENTAL RESULTS

4 - 8 RTO-TR-IST-031

There are many ways in which the ASR system could be improved including the use of separate “pilot” and
“tower” channel modeling, the incorporation of data from the Green Flag and FAA corpora, the use of speaker
adaptation (not yet a feature of Vogon) or the use of an ATC specific grammar. The data also presents an
opportunity for evaluating other technologies like speaker identification or “listener” identification, or closed
set accent identification. While the initial word error rate is high for a direct ATC transcription task, the ASR
transcriptions (or lattices) can be used for other token-based technologies.

4.4 CONCLUSIONS

A variety of experiments measuring the impact of multilingual and non-native speech on automatic speech
processing accuracy have been performed. The results vary depending on the type of technology employed,
the way in which the data are used, and the experimental methodology. Generally, however, we see that
speech-processing performance degrades somewhat as we move from single-language, native applications to
multi-lingual, non-native applications. Research efforts seeking to close this gap are underway at many sites
worldwide.

4.5 REFERENCES

[1] Evandro Gouvea. Learning to use the CMU Sphinx Automatic Speech Recognition System. Carnegie
Mellon University. http://cmusphinx.org/tutorial.html.

[2] Rita Singh. The SphinxTrain Manual. Carnegie Mellon University. http://www.speech.cs.cmu.edu/
sphinxman/fr4.html.

[3] Mosur K. Ravishankar. Sphinx-3 s3.6 Decoder. Carnegie Mellon University. http://cmusphinx.source
forge.net/sphinx3/s3_description.html.

[4] Francisco Sevilla, Raul Mohedano. Evaluation of the NATO IST031/RTG013 Non-Native Military Air
Traffic Control (nnMATC) corpus using HTK and Sphinx recognizers (Internal Report). CIDA, Spain,
2006.

[5] Steve Young et al. The HTK Book (for HTK version 3.3). Cambridge University Engineering
Department, 2005. http://htk.eng.cam.ac.uk.

http://cmusphinx.org/tutorial.html
http://www.speech.cs.cmu.edu/sphinxman/fr4.html
http://www.speech.cs.cmu.edu/sphinxman/fr4.html
http://cmusphinx.sourceforge.net/sphinx3/s3_description.html
http://cmusphinx.sourceforge.net/sphinx3/s3_description.html
http://htk.eng.cam.ac.uk/

	Chapter 4 – EXPERIMENTAL RESULTS
	4.1 INTRODUCTION
	4.2 THE IMPACT OF BATTLEFIELD SPEECH
	4.2.1 Impact on Speech Recognition
	4.2.2 Impact on Speaker Recognition
	4.2.3 Impact on Entity Recognition

	4.3 SPEECH RECOGNITION EXPERIMENTS ON THE nnMATC CORPUS
	4.3.1 Evaluation using HTK and Sphinx Recognizers
	4.3.2 Evaluation using DGA Recognizer
	4.3.3 Evaluation using VOGON Recognizer

	4.4 CONCLUSIONS
	4.5 REFERENCES

