

RTO-TR-IST-061 3 - 1

Chapter 3 – SERVICE ORIENTED ARCHITECTURE
TECHNOLOGIES USED

This chapter provides an overview of the SOA technologies used and evaluated by IST-061. Service
Oriented Architecture (SOA) is, as explained in Section 1.3, a powerful but simple architectural principle
inspired by the way business is performed. Simplified, a SOA consist of Service Providers who offer their
service(s) to Service Consumers by publishing it in a registry. Service Consumers find (discover) these
services by using the Service Registry. After discovering suitable services, Service Consumers can bind to
the Service Producer, that is, start using the service in accordance to the specified service contract.
A simplified overview of SOA is presented in Figure 3.1. The arrowed lines indicate communication
between the entities.

Service
Registry

Service
Consumer

Service
Provider

Bind

PublishFind Service
Contract

Service
Registry

Service
Consumer

Service
Provider

Bind

PublishFind Service
Contract

Figure 3.1: Service Oriented Architecture.

A SOA may best be defined as a collection of services that communicate with each other [1]. A service
encapsulates standalone functionality which may be delivered across a network. It is well defined by a
contract (see Section 3.2). Services can be combined to form the desired application or system: A service
consumer can use different services from different service providers and aggregate them into a new
service offered to potential service consumers.

It is important to remember that SOA is only an architectural principle, and is not tied to a given
technology. A number of technologies such as CORBA, Java RMI and others can be used when
implementing a SOA. However, the most popular approach to implementing SOA is the use of Web
Services. This is also chosen for the work performed in this group. The most important Web Services
technologies used is described in the following sections.

3.1 WEB SERVICES

Web Services are currently the preferred technology for implementing a Service Oriented Architecture and
are quickly becoming the de-facto standard. There are many, often ambiguous, views on what a Web
Service is. In this context we use the definition provided by the W3C: “A Web service is a software system
designed to support interoperable machine-to-machine interaction over a network. It has an interface
described in a machine-processable format (specifically WSDL). Other systems interact with the Web

SERVICE ORIENTED ARCHITECTURE TECHNOLOGIES USED

3 - 2 RTO-TR-IST-061

service in a manner prescribed by its description using SOAP messages, typically conveyed using HTTP
with an XML serialization in conjunction with other Web-related standards” [2].

Web Services are essentially a set of XML based standards used to implement a SOA. From these one can
extract three basic specifications:

1) The WSDL specification, used for service descriptions and contracts;

2) SOAP used for transport of messages; and

3) The UDDI service registry specification.

These are explained in more detail in separate sub sections below. The most important standardisation
organizations for Web Services standards include the Organization for the Advancement of Structured
Information Standards (OASIS) [3] and the World Wide Web Consortium (W3C) [2]. The Internet
Engineering Task Force (IETF) [9] is also maintaining some Web Services related standards.

It is important to note that the use of Web Services technologies does not automatically imply a
SOA implementation; one can use Web Services technology and not adhere to the SOA principles.
Web Services, although quickly becoming the de-facto standard, are not the only technology that can be
used to implement a SOA.

3.2 WSDL

The Web Services Description Language (WSDL) is used to define the service contract for a Web Service.
When describing services using WSDL it is possible to create a formal, machine-readable description
which can be used to invoke the Web Service. The use of XML is the common denominator with all Web
Services technologies, so it is also used by WSDL. A WSDL document is an XML document, and as such
the Web Service description can be mapped to any implementation language, platform, object model or
messaging system.

The description provided in a WSDL document includes definitions of messages and types. Type
definitions in turn include definitions of port types, bindings and services. A WSDL definition consists of
the following elements:

• The message element. It describes the XML payload to use. Message elements are described using
XML schema types, either built-in or complex, which are either embedded in the WSDL
document or included/imported from external sources.

• The port type element. This provides an abstract definition of the interface of the Web Service and
the operations provided, including which messages to use.

• The binding element. This describes a particular mapping between the abstract port type element
to a given protocol (e.g. SOAP over HTTP) and encoding style.

• The service element. It provides the final mapping from the abstract definition to a given address
where the service can be reached, e.g. an URL.

The abstract definitions provided by a WSDL document can be extended with different port types and
service definitions, thus providing the opportunity to describe the same service with different
implementations.

During this work, WSDL v1.1 was used. This is the current version and is hence the most used. Within the
W3C there is ongoing work on a WSDL v2.0 [18], but this initiative is still only a candidate
recommendation.

SERVICE ORIENTED ARCHITECTURE TECHNOLOGIES USED

RTO-TR-IST-061 3 - 3

3.3 SOAP

SOAP used to be the abbreviation for Simple Object Access Protocol. Today it is just the name of the
messaging protocol that has become the de-facto standard used with Web Services, but has no specific
meaning beside that. SOAP defines how to do service invocations in a standardised way, using XML.

A SOAP message consists of the three basic XML structures Envelope, Header and Body. The Envelope
wraps the optional Header and required Body element. The Body element is used to convey the actual
XML data (that is the payload) to be transported. The SOAP Header is optional, but is an extensible
mechanism used to convey additional information that is not application payload; this can for example be
control information and other application specific data.

SOAP messages can be delivered over a number of application, transport and network protocols. The most
commonly used binding is SOAP over HTTP, which was also used during the work described in this
document. The SOAP over HTTP binding describes how HTTP can be used to transport SOAP messages
between hosts. Other possible protocols that can be used to transport SOAP messages include bindings to
Simple Mail Transfer Protocol (SMTP), File Transfer Protocol (FTP), Java Messaging Service (JMS),
Internet Inter-ORB Protocol (IIOP) and other proprietary protocols.

SOAP is available in both versions 1.1 and 1.2. Even though the SOAP version 1.2 is available and
recognised as a W3C Recommendation (also known as standard) version 1.1 is still the most widely used
one. During the work described in this document both versions were used.

3.4 SERVICE REGISTRY – UDDI

An important part of an SOA is the Service Registry. When using Web Services the most common
standard chosen is the Universal Description Discovery and Integration (UDDI) from OASIS [3].
The UDDI provides mechanisms for publishing and discovery of services, primarily implemented using
Web Services. Services implemented using other technologies can also be published, even though this is
not usual. UDDI can be used for both design time and run time discovery of services. The most common
pattern of use is however design time discovery. Design time discovery is utilised by client-software
developers when designing and implementing client software. By run time discovery we mean service
discovery performed during execution of a system. When using UDDI, run time discovery often involves
finding running instances of a service with a known technical fingerprint, and not discovery of unknown
types of services.

The data model provided by UDDI also provides means to describe and register service providers such as
businesses and organisational units, as well as relationships among them. A description of organizational
entities is named businessEntities in the UDDI data model (see Figure 3.2). This entity is one of the four
core entities of UDDI, and contains zero or more businessService entities. The businessService entity is a
high level description of services. It is used to outline the purpose of the services, and include metadata
used for service discovery. The businessService entity is a non-technical description of the services and
contains zero or more bindingTemplate entities which describe the technical implementation of the
service. The information contained in the bindingTemplate is used by a client to bind to and interact with
the given service. The bindingTemplate is basically a collection of references to tModels, also known as
Technical Models. tModels are the final core entity and are used within UDDI to represent unique
concepts or constructs like specifications, transports and protocols. The businessService entity together
with the referenced tModels forms a technical fingerprint of the service. Nevertheless, tModels are not
confined to describing technical fingerprints. They can also be used to describe other concepts like
categorization schemes for businesses and services, identifier schemes and other concepts.

SERVICE ORIENTED ARCHITECTURE TECHNOLOGIES USED

3 - 4 RTO-TR-IST-061

Figure 3.2: UDDI Data Model.

It is important to note that UDDI is itself implemented as a Web Service with advanced interfaces and
using SOAP for message exchange. This includes APIs for publishing, inquiry, subscription, security
policy, custody and ownership transfer as well as the value set API which is optional and used to allow
external validation of data. The UDDI also describes an API used for replication of service registry
content. Even though UDDI essentially started out as a centralised service registry, newer versions of the
standard include the ability to create federations of registries and integration of registries. The ability to do
replication allows for improved scalability and to a certain extent better protection against single-point of
failure problems.

Alternatives to UDDI include ebXML Registry [11], which is similar to the UDDI specification. The use
of more or less centralised registries is by far not the only way to perform service discovery. Decentralised
alternatives like the WS-Discovery [15] specification are also available. We chose to rely on the UDDI
standard for this work due to the fact that UDDI is a de-facto standard and it has got strong vendor
support.

UDDI has evolved to version 3.0, which was ratified as an OASIS standard in February 2005.
Even though few implementations of this specification are available yet, we chose to rely on this version
for the work described herein.

3.5 PUBLISH/SUBSCRIBE – WS NOTIFICATION

Publish/Subscribe, often abbreviated to pub/sub, is a well known communication pattern for event-driven,
asynchronous communication. Publish/Subscribe makes it possible to link together publishers
(data producers) and subscribers (data consumers) into loosely coupled, scalable and dynamic networks.
As shown in Figure 3.3, the publish/subscribe pattern fits well into the SOA and Web Services
architecture. When fitting pub/sub into SOA, a service provider is equal to a publisher, and a service
consumer is equal to a subscriber.

SERVICE ORIENTED ARCHITECTURE TECHNOLOGIES USED

RTO-TR-IST-061 3 - 5

Service
Registry

Service
Provider

Service
Consumer

Subscriber Publisher

Subscribe

Service
Contract

Find Publish

Notify 0

Notify n

Service
Registry

Service
Provider

Service
Consumer

Subscriber Publisher

Subscribe

Service
Contract

Find Publish

Notify 0

Service
Registry

Service
Provider

Service
Consumer

Subscriber PublisherSubscriber Publisher

SubscribeSubscribe

Service
Contract

Find Publish

Notify 0Notify 0

Notify nNotify n

Figure 3.3: Publish/Subscribe Basic Elements in a SOA.

To implement the Publish/Subscribe pattern different protocols and standards can be used. We chose to
rely on the specifications provided by OASIS, denoted WS-Notification [13]. This is actually a collection
of the three specifications WS-BaseNotification, WS-BrokeredNotification and WS-Topics. For the work
presented in this document we utilised the WS-BaseNotification and the WS-Topics specifications.
Using WS-Notification terminology, a service that publishes data (publisher) at a specified Topic is called
a NotificationProducer. Topics are a way to group together, represent and categorize items of interest.
The data format of each topic is defined by an XML schema. A client, called a NotificationConsumer
(subscriber), first creates a subscription to the service. The client will subsequently receive notifications as
they are produced by the NotificationProducer. Since WS-Notification is a Web Services specification,
all messages are exchanged using SOAP.

Version 1.3 of the WS-Notification, WS-BrokeredNotification and WS-Topics specifications has been
recognised as OASIS standards in October 2006. However, during the work described in this document
we relied heavily on the use of version 1.2 of these specifications, because no implementations where
available at the time.

Other alternatives to WS-Notification have also been proposed, most notably the WS-Eventing
specification [14]. This specification is the product of an effort by an industry initiative, and has the status
of a “Member Submission” to the W3C as of March 2006. This specification has not been subject to
evaluation from this group.

3.6 XML SECURITY

When using Web Services, all the specifications are based on XML and the use of SOAP messages.
Therefore XML security specifications can be used to secure the different Web Services components.
Many specifications have been written for securing XML documents and some of them have become
standards. Most notable of these are the XML Digital Signature (XML Dsig) which has both been ratified
as a W3C Recommendation [17] and published as an IETF RFC [6], and XML Encryption (XML Enc),
which has been published as a W3C Recommendation [16].

The OASIS WS-Security standard specifies how to extend the SOAP message header in order to achieve
message integrity, confidentiality, authentication of originator and replay protection. It is based on the use

SERVICE ORIENTED ARCHITECTURE TECHNOLOGIES USED

3 - 6 RTO-TR-IST-061

of the security standards XML Digital Signature and XML Encryption and supports a variety of security
token formats (e.g. X.509, SAML [12] and XrML [7]).

A security label is often used in association with information to provide an indication of the security
policy, sensitivity, compartments, and other handling caveats. An official XML-based standard for
security labeling of information objects does not yet exist. On the other hand, security label specifications
have earlier been developed for X.400 messaging (X.411) and SMTP (IETF S/MIME ESS [8]).
These have been used as a basis for the development of the XML Security Label specification used in the
demonstrator.

In addition to the use of XML Security specifications and standards to secure the SOAP messages
exchanged, we used a security infrastructure to provide and distribute security tokens, including user
privileges. We used a PKI and an LDAP Directory to provide the security infrastructure for exchange of
certificates and certificate revocation lists. LDAP synchronization was performed using WS-Notification.

3.7 MIP/C2IEDM

The data model is not a core SOA technology as such, but it is included here because data exchange on an
interoperability level is important. For this, we chose to reuse the data model defined by the Multilateral
Interoperability Programme (MIP) [10]. This is an effort towards providing a common understanding of
the battle space between different countries. It is independent of doctrines, procedures and tactics.
The MIP model has been developed over many years of work. It started as a land model and is currently
being extended to cover joint environments. The aim of the MIP is to achieve international interoperability
of Command and Control Information Systems (C2IS) at all levels, in order to support multinational
operations.

We chose to use the C2 Information Exchange Data Model (C2IEDM) from MIP Baseline 2. This data
model is primarily intended to be used for database replication using the MIP Data Exchange Mechanism
(MIP DEM). Instead of using database replication as defined in DEM, we are using Web Services as the
information exchange mechanism, using the object-oriented XML representation of the C2IEDM.
The main reason for this choice is the fact that XML is well aligned with Web Services.

The C2IEDM is a large and complex data model with approximately 240 entities. As a consequence of
this we defined a subset that we used for this work. This subset consists of 30 “core” entities which covers
our need for a data model. It should be emphasized that the model in it self was not changed but only
reduced, so the data model is still valid.

	Chapter 3 – SERVICE ORIENTED ARCHITECTURE TECHNOLOGIES USED
	3.1 WEB SERVICES
	3.2 WSDL
	3.3 SOAP
	3.4 SERVICE REGISTRY – UDDI
	3.5 PUBLISH/SUBSCRIBE – WS NOTIFICATION
	3.6 XML SECURITY
	3.7 MIP/C2IEDM

