

RTO-TR-IST-061 A - 1

Annex A – DEMONSTRATOR SPECIFICATION

The following document is a redacted version the specification of the CWID 2006 demonstrator. Some
participants of the group could not release their contributions to the specification outside IST-061. These
parts have been removed. It should be noted that this means that the information in this version of the
specification is not sufficient to reproduce the experiments and is thus only provided for informational
purposes.

DOCUMENT SUBMISSION FORM

Date: 01/12/2006 Document Reference Number:

 NATO RTO/IST-061:

Title:

The NATO RTO/IST-061 Secure SOA Demonstrator Specification for
CWID 2006

ISSUE: Version 2.0 - modified version

Editor: NATO RTO-IST 061

Purpose:

Classification: NATO UNCLASSIFIED

Document Type: D

D Finalized Document
WP Working Paper
R Record of Meeting
N Notice of Administrative Nature
A Agenda

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 2 RTO-TR-IST-061

A.1 INTRODUCTION

This document has been written as part of the work of the NATO RTO/IST-061 (Secure Service Oriented
Architectures (SOA) Supporting Network Enabled Capabilities). This document specifies the interfaces,
protocols and functionality, which must be implemented in order to achieve interoperability between the
systems involved in the Secure SOA distributed demonstrator at CWID 2006. Some tutorial text has been
included in order to document the chosen functionality and solutions of this demonstrator.

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be
interpreted as described in IETF RFC 2119.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 3

A.2 DEMONSTRATOR ARCHITECTURE

The demonstrator will comprise several national systems or demonstrations interoperating through secured
Web Services. Two interactions patterns are demonstrated:

• Publish-subscribe,
• Request-response.

For both interaction patterns the exchanges between nations are secured with XML security technologies.

The development being performed by each participating nations1 comprises:

• The implementation of this interoperability specification,
• The development and integration of national systems or prototypes to produce and consume data

and services. This second part of the development is a national concern not described by this
specification.

The logical architecture comprises in each nation a set of software components supporting secured Web
Services exchanges in both publish-subscribe and request-response modes (see Section A.4). From a
deployment point of view they may be centralised in a single physical gateway or distributed to the end
systems (some components being deployed close to the national systems).

Secured Web Services allow:

• Any nation to declare public (coalition) Web Services exposed to other nations,
• One nation to invoke any coalition Web Service provided by an other nation (provided access

rights are granted),
• Any nation to declare public (coalition) publishers of information on information Topics,
• One nation to subscribe to a given Topic on a foreign Publisher in order to receive information

updates as notifications from that Publisher (push mode).

Examples of such interactions between nations are depicted on the Figure A.1.

1 Several figures in this document show only two or three nations for simplicity. However, the number of participating nations

is not constrained by the architecture. Hence, the five nations participating to the group are potential contributors to the
demonstrator. The same applies to NC3A that joined the group in April 2005.

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 4 RTO-TR-IST-061

NATO
interoperability

network

Country B
Systems

Country A
Systems

Country C
SystemsSecured

Web Services
Gateway

Coalition service
invocation

Coalition
Service

exposed

S

P

Coalition
Publisher
exposed

subscription

notifications

SPC

Firewall

SPC

SPC
Firewall

SPC

SPC

Figure A.1: High-Level Logical Architecture.

Figure A.2 shows the demonstrator developed components.

Secured Web Services Components

Service
registry

Data
Publishing

Node

XML
guard

LDAP
Directory

Figure A.2: Logical Components.

The Data Publishing Node supports publish-subscribe exchanges,
The Service Registry provides descriptions of services exposed by a given nation,
The XML Guard checks that inbound and outbound flows comply with security policies,
The LDAP Directory stores certificates and access rights.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 5

The following sections refine the architecture of the demonstrator:
• Section A.3 details the Web Services protocols to be used (addresses technical interoperability),
• Section A.4 describes the publish-subscribe service, its components, protocol and implementation

using Web Services standards (addresses technical interoperability),
• Section A.5 introduces the Data Model and Service Model (addresses semantic interoperability),
• Section A.6 details the Service registry architecture and implementation using Web Services

standards (addresses technical interoperability),
• Section A.7 details the security architecture, the security features to be demonstrated and their

application to Web Services (addresses technical interoperability focusing on security),
• Section A.8 collects information about compression techniques.

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 6 RTO-TR-IST-061

A.3 USE OF WEB SERVICES CORE STANDARDS

This chapter describes the Web Services Interoperability specifications to be used in the Demonstrator.
The solutions described are based on the use of existing civil or military standards where possible,
supported by profiles developed especially for this demonstrator.

A.3.1 SOAP
SOAP version 1.1 using document literal style “Wrapped Mode” SHALL be used. The rational for this is
the use of Globus Toolkit. In addition HTTP SHALL be used for transport (SOAP over HTTP).

A.3.1.1 Attachments

Attachments SHALL NOT be used.

A.3.1.2 Potential Issue with SOAP over HTTP

Some of the COTS products used in this demonstration use the HTTP Response message to communicate
the result back to the client. This may create problems since some implementations does not wait for the
HTTP response to return.

As of the time of writing the extent of this potential issue is not known. Potential solutions include
creating wrappers on the client side.

A.3.2 WSDL
WSDL version 1.1 SHALL be used.

A.3.3 Message Transport
HTTP version 1.1 SHALL be used.

A.3.4 UDDI
UDDI version 3 SHALL be used.

See Section A.6 for more details.

A.3.5 Binary XML/Compression Algorithm
See Section A.6 for details.

A.3.6 Publish/Subscribe Specifications
See Section A.4.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 7

A.4 PUBLISH/SUBSCRIBE SPECIFICATION

Publish-subscribe is among the technical services to demonstrate. Participating nations are expected to
exchange information using this service. They can be provider (publisher) or consumer (subscriber) of
information or both.

Some of the text of this chapter describing architecture details have been removed to meet the Thales
publication policy. The places where text is removed is highlighted.

A.4.1 Service Concepts and Features
The publish-subscribe service provides a data–centric interoperability means between nations. Exchanged
data are organised into Topics which are identified with a topic name and which refers to a given data
structure. Quality of Service parameters could also be attached to Topics. However, this is not envisaged
at that stage.

E.g.: a Topic to related IMINT information
Name: “Image_Intelligence”
Data structure:

- intelligence report (free text)
- image co-ordinates (Geodesic co-ordinates)
- the image itself (binary data).

Topics are defined for the scenario exchange needs and are not intended to be changed or extended with
new Topics during the experiments. Each nation can subscribe to the defined Topics and can publish
information on them.

A.4.2 Service Architecture
The text is removed in this version of the specification

A.4.3 Publish/Subscribe Protocol
Publishers and Subscribers act as representatives of their nation on the NATO Net.

A Publisher interacts with the Service Registry and with Subscribers in the following way:

• A Notification Service publishes itself by sending to the Service Registry a UDDI Publish
message containing the specification of the Topic.

• Then, it publishes information when it wants to do so. The published information shall comply
with the defined data structure for the Topic. If there are Subscribers for the Topic, the Publisher
sends a Notification message to all the Subscribers. It is the Publisher’s responsibility to maintain
a list of Subscribers for each Topic on which it publishes information. Several information
elements complying with the Topic data structure can be published with one publication action
grouping these elements into one Notification message. Hence, a Notification message includes
the Topic name, the publisherId, a list of information elements.

• A Publisher can decide to stop publishing information on a Topic. In such a case, it must
unregister from the service for that Topic. An “update” message (using the same service key) is
sent by the Publisher to the Service Registry.

A Subscriber interacts with the Service Registry services and the Publishers in the following way:
• It first searches the Service Registry to find one or several Publishers that match its information

needs. It selects one or several of them and then subscribes to related Publishers by sending them

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 8 RTO-TR-IST-061

Subscription message(s). One Subscription message can mention one or several Topic(s) of
interest. Each subscription is identified by a unique subsciptionId and contains the Topic name
and a subscriptionTerminationTime. Publishers are responsible of automatic subscription deletion
when this duration is elapsed. A Subscriber can renew a subscription before the
subscriptionTerminationTime is elapsed by sending a Renew message with the same
subscriptionId and the specification of a new subscription duration. Publishers receiving such
Renew messages should reinitialize their timers accordingly.

• Then, the Subscriber receives asynchronously Notification messages from Publishers.
• A Subscriber can decide to unsubscribe from one Topic. It uses the corresponding subscriptionId

to do so in an Unsubscribe message sent to the related publishers.

A.4.4 Design Constraints, Guidelines and Technologies
The text is removed in this version of the specification

A.4.5 Implementation using Web Services
This section describes the implementation of the described publish-subscribe concepts and protocol using
Web Services standards.

The selected standards to do so are the OASIS publish-subscribe standards: WS-Topics and WS-
BaseNotification. WS-BrokeredNotification is not used in the current specification.

The security services described in Section A.7 SHALL be used.

The selected versions of those standards are:
WS-Topics: 1.2 draft 01, 22 July 2004
WS-Base Notification: 1.2 draft 03, 21 June 2004

When reference to WS-BrokeredNotification is needed the referenced version is WS-BrokeredNotificatio
1.2 draft 01, 21 July 2004.

There are several reasons for selecting those versions:

• The mechanisms provided by those versions cover most of the demo needs,
• There OSS implementations: version 1.2 Draft 03 is the version implemented by Pubscribe and

the Globus Toolkit. Other tools like ServiceMix also provide an implementation of WS-
Notification, which is not 1.3 (which 1.2 exact version is not clear).

• WS-BaseNotification v1.3 is very new and no implementation could be found.

This table below provides the mapping between the concepts and protocol described in the previous
section and the WS standards for the implementation. When some standard features are not fully used, this
is also mentioned in the table below.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 9

Concept Correspondence to WS standards
Publisher NotificationProducer
Subscriber NotificationConsumer and Subscriber. The WS-

BaseNotification standard makes a distinction between the
roles NotificationConsumer and Subscriber. In our case, the
Subscriber will also be the Notification Consumer.

Topic Topic of WS-Topics with the following restrictions:

- only one data type per Topic,
- only root Topics are used.

COI Topic Space of WS-Topics.
Notification Message NotificationMessage. Received through the Notify operation.

Operation Correspondence to WS standards
Service Registry::Register Publisher To be mapped on Service Registry publication API.
Service Registry::Change Publisher To be mapped on Service Registry publication API.
Publisher::Subscribe NotificationProducer::Subscribe

Parameters:
- ConsumerReference: NotificationConsumer EPR
- TopicExpresssion= <topic Qname>
- TopicExpresssion Dialect= Simple
- UseNotify= true (default value, can be omitted)
- Precondition= optional, omitted,
- Selector= optional, omitted,
- SubscriptionPolicy= optional, omitted
- InitialTerminationTime= <xsd:dateTime to be set by

subscriber>
 NotificationProducer::GetCurrentMessage
Publisher::Unsubscribe Not defined in selected standards but provided by Pubscribe.

Exists also in WS-BaseNotification 1.3.

Replacement solution:
The unsubscribe message will be published by Subscribers on a
built-in Topic called “Subscriptions”. Subscribers that want to
terminate their subscription publish in the “Subscriptions”
Topic a Subscription object providing the reference of the
subscription to terminate. The Publishers must subscribe to that
built-in Topic.
The Subscription object is defined by an XML Schema.

Publisher::Renew Not defined in selected standards. Exists only in WS-
BaseNotification 1.3.
Replacement solution:
The renew information (new termination time) to be published
by Subscribers on the built-in Topic “Subscriptions”.
Subscribers that want their subscription to be renewed publish
in the “Subscriptions” Topic a Subscription object specifying a
new termination time.
The Publishers must subscribe to that built-in Topic. The
Subscription object is defined by an XML Schema.

Not used SubscriptionManager::PauseSubscription
Not used SubscriptionManager::ResumeSubscription

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 10 RTO-TR-IST-061

Subscriber::AcceptNotificationMessage NotificationConsumer::Notify
Notify message= one or more NotificationMessage
NotificationMessage:

- Topic= <topic Qname>
- Topic/Dialect= Simple
- ProducerReference= EPR of NotificationProducer
- Message= XML fragment complying with our data

model XML schema.

A.4.6 Potential Asset-COI Relationships
Chapter 6 describes how Business Entities are modeled in UDDI. Simple relationships are also modeled.
Below is a description of a more sophisticated relationship model between Assets and COIs. This model is
not realized in this work, but may be a valuable input for future work.

The COIs, the assets allowed to join these COIs and the topics these assets produce or consume for these
COIs are described below.

Four relationships between assets and COIs are supplied:

1. The topicSpaces an asset has the right to produce for all the COIs. This relationship is named
“AllowedProduction”.

2. The topicSpaces an asset has the right to consume for all the COIs. This relationship is named
“AllowedConsumption”.

3. The topicSpaces an asset produces at a current time for all the COIs. This relationship is named
“RealProduction”.

The corresponding UML diagram is shown below:

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 11

Figure A.3: Relationships between COIs and Assets.

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 12 RTO-TR-IST-061

A.5 DATA AND SERVICE MODEL

A.5.1 Data Model
Considering the studied scenario, the data model encompasses only a few data types: maritime and land
pictures, Sensor requests/response and MTI Tracks.

• Maritime and Land Picture

A subset of MIP XML is defined in Appendix 10.

The Maritime picture reflects the NAVSITSUM and MARINTSUM. The Land picture reflects the
OWNSITREP and ENYSITREP.

• Sensor Request and Response

SensorRequest

TypeSensorRequest
Field Type Cardinality Comment

Requester String 1 Operational Identifier of the
requester

Start date typeDTG 1
Duration int 1 minutes
DataNature String 1 Only one value possible:

“MTI”
Area TypeArea 1

TypeArea
Field Type Cardinality Comment

MinLongitude double 1 Degrees, >0 towards East.
MaxLongitude double 1 Degrees, >0 towards East.
MinLatitude double 1 Degrees, >0 towards North.
MaxLatitude double 1 Degrees, >0 towards North.

SensorRequestResponse

TypeSensorRequest
Field Type Cardinality Comment

Status String 1 OK or NOK
RejectionCause String 1 If NOK, reason for NOK
EffectiveStartDate TypeDTG 1 If OK, StartDate accepted by

sensor system.
EffectiveDuration int 1 Minutes. If OK, Duration

accepted by sensor system.
DistributionTopic String 1 If OK, Topic on which

requested data is published.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 13

Figure A.4: Sensor Request/Response Sequence Diagram.

• MTI Tracks

The MTI Tracks are about exporting data from a sensor system. It represents a snapshot, a technical
situation, upon an interval of past time, of which has been detected by the sensor and then processed by
the sensor system.

MTI Tracks are contained in a surveillance report.

The MTI Tracks Xml Schema can be found in Appendix 6, Section A6.1.
Additional information on MTI Tracks is in Appendix 6, Section A6.2

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 14 RTO-TR-IST-061

Surveillance Report:

Figure A.5: MTI Tracks xml Schema.

A.5.2 Service Model
The Service Model describes the services provided by each nation and potentially used by others. Services
are described by a set of attributes that give enough information about them so that potential users can
select and invoke one.

Considering the studied scenario, services are of two kinds:

• publish-subscribe services. The publish-subscribe operations exposed by publishers and
subscribers are described in the publish-subscribe section. Publishers are considered as services
exposed by one nation to the others. As such, publishers are declared as services in the Service
Registry (Subscribers are not). The model of Publishers as services is part of the detailed service
model defined in the Service Registry specification.

• intelligence orientation services (one nation provides observation / intelligence service to others
that can specify what kind of data or information they expect). The detailed service model is
provided is the Service Registry section. The logical (business part of it is defined hereafter ->
AcceptSensorRequest operation.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 15

• SensorRequestResponse AcceptSensorRequest(SensorRequest)

AcceptSensorRequest (SensorRequest) allows an entity requiring sensor support to ask another entity
providing such service to detail its specific needs. For the demonstration, it is proposed to define an
SensorRequest as a geographical area (form to be specified in more details: geodesic “rectangle”, polygon,
other, … The SensorRequest is exemplified in the SensorRequest service, of which the detailed structure
is defined in the Data Model section.

The Service provider receiving the call returns an SensorRequestResponse message through which it can
either accept or reject the request. The detailed structure of the SensorRequestResponse is defined in the
DataModel section. If the request is accepted then the service provider pushes these messages on a
publish-subscribe Topic and provides the Topic name to the caller (that can subscribe to it), along with the
expected date of first message publication on the Topic.

In the scenario, this operation is implemented by the Frigate/UAV Station and called by the Land Brigade.

A.5.3 Topics Model
Several Topics are defined to exchange operational data using the publish-subscribe mode. These Topics
are:

• “Land picture” Topic: transports instances of Land Picture type according to the data format
defined above.

• “Maritime picture” Topic: transports instances of Maritime Picture type according to the data
format defined above.

• “MTI Tracks” Topic: transports instances of TypeTacticalPicutre according to the data format
defined above.

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 16 RTO-TR-IST-061

A.6 SERVICE REGISTRY SPECIFICATIONS

This chapter describes the Service Registry and related specifications to be used in the NATO RTO/IST-
061 CWID06 demonstration. It describes the architecture of the registry, in addition to what information to
publish about each service and how to publish this information into the Service Registry to make the
services searchable.

A.6.1 Architecture
The service discovery architecture will be based on UDDI (Universal Description, Discovery and
Integration) and an abstraction layer in front of UDDI. This abstraction layer will handle some aspects of
the service registry that are not satisfied by the UDDI registry, such as security, extended search
capabilities and service termination policies.

Figure A.6: Service Discovery Architecture.

Figure A.7: Abstraction Layer.

The security and service termination components of the abstraction layer are REQUIRED, whereas the
extended search capabilities component is OPTIONAL.

For demonstration purposes a central registry will be provided that all nations can use if they so choose,
but each nation is free to provide their own service registry. Figure A.8 illustrates this choice. Here nation
B provides a local service registry, whereas nation A does not.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 17

Figure A.8: Central and/or Local Service Registries.

If a nation provides a local service registry this has to be synchronized against the central one, how this is
done is a national concern.

A.6.1.1 Which Version of UDDI to Use

UDDI V3 [[1]] will be used as the specification to build on regarding the service discovery architecture in
the demonstrator. The UDDI V3 specification consists of several APIs; the Inquiry API set, the
Publication API set, the Security API set, the Subscription API set, the Custody and ownership Transfer
API set, the Value Set API set and the Replication API set. The service registry MUST at the minimum be
compliant with the UDDI V3 Inquiry, Publication, and Security Policy API sets. The other API sets are
OPTIONAL.

The differences of UDDI V3 versus UDDI V2 are briefly described in Appendix 1, Section A1.13.

A.6.1.2 Abstraction Layer Programmers APIs

The abstraction layer will implement the necessary UDDI V3 Programmers APIs. This includes the
Inquiry API Set, Publication API Set and the Security Policy API Set. In addition the Publication API Set
is extended with the special purpose calls of publishServices and resetRegistry. These are explained in
Section A.6.7. Other UDDI V3 Programmers API’s may be added if new requirements emerge.

Both success and error reporting will be compliant with the UDDI V3 specification. Aditional error
reporting is necessary for security processing and some of the special purpose calls. These are defined as
needed in this document.

A.6.1.3 Other Decisions

String values within UDDI SHALL NOT be case sensitive.

UDDI V3 records SHALL use keys of the format “uddi:<uuid-key>” (ref Appendix 1, Section A1.13).

A.6.2 Use of the UDDI Data Model
The metadata describing each service is important, because it is going to be used to locate relevant service
descriptions, and if the information about each available service is not good enough, locating these
descriptions will become hard. The metadata in question will be taxonomies used to classify the service
descriptions, domain-specific attributes that may be of interest and service interfaces, message encodings

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 18 RTO-TR-IST-061

and transport protocols to use. An advantage on publishing information about service interfaces, message
encodings and transport protocols in the service registry, is that it makes it easier to find compatible
services and it facilitates run-time discovery of services. The technical note mentioned in Section A.6.7.1
provides the means to do this.

Another thing that is important is where to store the metadata concerning the services in the UDDI data
model. It will be tModels that is used to represent taxonomies, domain-specific attributes, service
interfaces, message encodings and transport protocols. References to tModels can be put on every entity
within the UDDI data model (either within identifierBags, categoryBags or tModelInstanceDetails
constructs). Domain-specific attributes or taxonomies used to describe a service will be placed as
references to the corresponding tModels within the categoryBag-element of the businessService-
element. Domain-specific attributes and taxonomies used to describe the organisation/unit/company/asset
that publishes the service are placed as references to the corresponding tModels within the categoryBag-
element in the businessEntity-element. Service interfaces, message encoding and protocols used to
implement a web service will be placed as specified in the OASIS technical note [[2]].

A.6.2.1 The UDDI Data Model

The UDDI data model consists of four core entities, as seen in Figure A.9.

Figure A.9: UDDI Data Model.

The businessEntity contains descriptive information about the publisher of a service, for instance a
company or an organisation. The businessService contains descriptive information about a logical
service. Technical information about the businessService is found in the contained bindingTemplate
entities. Each bindingTemplate entity describes an instance of a web service offered at a particular
network address. It could for instance be that a logical service is implemented by several web services,
each with its own message encoding and transport protocols so as to accommodate for a variety of clients,
or it could be that a logical service consists of several web services that together make up the functionality
offered by the logical service. The tModel entity is used to represent unique concepts or constructs in
UDDI. This entity is used to describe web services in ways that are meaningful enough to be useful during
searches, and to make these descriptions complete enough that people and programs can discover how to
interact with web services they do not know much about.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 19

The agreed set of metadata to be used and where it is placed within the UDDI data model will give
directions on how to use the UDDI inquiry API to satisfy queries.

All information regarding security, i.e. signatures and labels, in this chapter is for the benefit of the
implementers of the service registry. The publisher SHALL not use the dsig:Signature element or put a
security label on any element, when publishing into the service registry. See Section A.6.6 for more
information.

A.6.2.2 tModels

The tModel is an important entity within the UDDI data model. The structure of an UDDI <tModel>
element is shown in Figure A.10.

<xsd:element name="tModel" type="uddi:tModel" final="restriction"/>
<xsd:complexType name="tModel" final="restriction">
 <xsd:sequence>
 <xsd:element ref="uddi:name"/>
 <xsd:element ref="uddi:description" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="uddi:overviewDoc" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="uddi:identifierBag" minOccurs="0"/>
 <xsd:element ref="uddi:categoryBag" minOccurs="0"/>
 <xsd:element ref="dsig:Signature" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="tModelKey" type="uddi:tModelKey" use="optional"/>
 <xsd:attribute name="deleted" type="uddi:deleted" use="optional" default="false"/>
</xsd:complexType>

Figure A.10: tModel-Structure in UDDI V3.

Several predefined <tModel> elements are given in Annex B.

A.6.3 What Metadata to Publish about Business Entities
The information about the organisation/asset/unit that publishes the service will be put into the
businessEntity-structure in the UDDI registry. This structure is shown below in Figure A.11. Also shown
are the sub structure contacts.

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 20 RTO-TR-IST-061

<xsd:element name="businessEntity" type="uddi:businessEntity" final="restriction"/>
<xsd:complexType name="businessEntity" final="restriction">
 <xsd:sequence>
 <xsd:element ref="uddi:discoveryURLs" minOccurs="0"/>
 <xsd:element ref="uddi:name" maxOccurs="unbounded"/>
 <xsd:element ref="uddi:description" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="uddi:contacts" minOccurs="0"/>
 <xsd:element ref="uddi:businessServices" minOccurs="0"/>
 <xsd:element ref="uddi:identifierBag" minOccurs="0"/>
 <xsd:element ref="uddi:categoryBag" minOccurs="0"/>
 <xsd:element ref="dsig:Signature" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="businessKey" type="uddi:businessKey" use="optional"/>
</xsd:complexType>

<xsd:element name="contacts" type="uddi:contacts" final="restriction"/>
<xsd:complexType name="contacts" final="restriction">
 <xsd:sequence>
 <xsd:element ref="uddi:contact" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:element name="contact" type="uddi:contact" final="restriction"/>
<xsd:complexType name="contact" final="restriction">
 <xsd:sequence>
 <xsd:element ref="uddi:description" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="uddi:personName" maxOccurs="unbounded"/>
 <xsd:element ref="uddi:phone" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="uddi:email" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="uddi:address" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="useType" type="uddi:useType" use="optional" default=""/>
</xsd:complexType>

Figure A.11: businessEntity-structure in UDDI V3.

Internally in the UDDI, uuid-keys with the prefix “uddi:” SHALL be used.

In the following the information regarding nations, assets and COIs (Community of Interest) will be
described.

A.6.3.1 Nations

The <businessEntity> element which describes a nation is populated as follows:
• The /businessEntity/discoveryURLs element is not used
• The /businessEntity/name element MUST contain the name of the nation.
• The /businessEntity/description element contains a short description of the nation. This is

OPTIONAL to provide.
• The /businessEntity/contacts element contains information about contact persons. At least

one contact MUST be specified, specifying more than one contact is OPTIONAL.
• The /businessEntity/businessServices element contains services offered by the nation. It

MAY be that a nation offers services indirectly via its assets and not directly from the nation
businessEntity.

• The /businessEntity/identifierBag element contains an identification string, refer to
Appendix 1, Section A1.1 for naming rules.

• The /businessEntity/categoryBag element contains keyedReferences referencing (using
predefined RTG-027 tModels):

o The Entity Type tModel and the value of the key is “Nation”.
o The General Keywords Category System tModel where the value of the keyName is

“SecurityLabel”and the value of the key is the appropriate label.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 21

• The /businessEntity/dsig:Signature element contains the signature of the businessEntity
description.

• The /businessEntity/@businessKey attribute is set to the key attributed to this
businessEntity element.

In Figure A.12 the information that will be published regarding a Nation is illustrated.

Figure A.12: Nation.

A nation contains assets; this relationship is captured using publisherAssertions as shown in Section
A.6.3.4.

A.6.3.2 Assets

The <businessEntity> element which describes an asset is populated as follows:
• The /businessEntity/discoveryURLs element is not used
• The /businessEntity/name element MUST contain the name of the asset.
• The /businessEntity/description element contains a short description of the asset. This is

REQUIRED to provide.
• The /businessEntity/contacts element contains information about contact persons. At least

one contact MUST be specified, specifying more than one contact is OPTIONAL.
• The /businessEntity/businessServices element contains services offered by the asset.
• The /businessEntity/identifierBag element contains an identification string, refer to

Appendix 1, Section A1.1 for naming rules.
• The /businessEntity/categoryBag element contains keyedReferences referencing (using

predefined RTG-027 tModels):
o The General Keywords Category System tModel where the value of the keyName is

“SecurityLabel”and the value of the key is the appropriate label.
o The Entity Type tModel and the value of the key is “Asset”.
o The Asset Categorization tModel and the value of the key is the type of asset this is.

• The /businessEntity/dsig:Signature element contains the signature of the businessEntity
description.

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 22 RTO-TR-IST-061

• The /businessEntity/@businessKey attribute is set to the key attributed to this
businessEntity element.

In Figure A.13 the information that will be published regarding an asset is illustrated.

Figure A.13: Asset.

An asset belongs to a nation; this relationship is captured using publisherAssertions as shown in Section
A.6.3.4. An asset is also related to a COI as shown in Section A.6.3.5.

A.6.3.3 COI

The <businessEntity> element which describes a COI is populated as follows:
• The /businessEntity/discoveryURLs element is not used
• The /businessEntity/name element MUST contain the name of the COI.
• The /businessEntity/description element contains a short description of the COI. This is

REQUIRED to provide.
• The /businessEntity/contacts element is not used.
• The /businessEntity/businessServices element is not used.
• The /businessEntity/identifierBag element contains an identification string, refer to

Appendix 1, Section A1.1 for naming rules.
• The /businessEntity/categoryBag element contains keyedReferences referencing (using

predefined RTG-027 tModels):
o The General Keywords Category System tModel where the value of the keyName is

“SecurityLabel”and the value of the key is the appropriate label.
o The Entity Type tModel and the value of the key is “COI”.

• The /businessEntity/dsig:Signature element contains the signature of the businessEntity
description.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 23

• The /businessEntity/@businessKey attribute is set to the key attributed to this
businessEntity element.

In Figure A.14 the information that will be published regarding a COI is illustrated.

Figure A.14: COI.

A COI is related to an asset as shown in Section A.6.3.5.

A.6.3.4 Relationships between Nation and Assets

The information about the relationships between a nation and an asset will be put into a
publisherAssertion-structure in the UDDI registry. This structure is shown below in Figure A.15.

<xsd:element name="publisherAssertion" type="uddi:publisherAssertion"
 final="restriction"/>
<xsd:complexType name="publisherAssertion" final="restriction">
 <xsd:sequence>
 <xsd:element ref="uddi:fromKey"/>
 <xsd:element ref="uddi:toKey"/>
 <xsd:element ref="uddi:keyedReference"/>
 <xsd:element ref="dsig:Signature" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:element name="fromKey" type="uddi:businessKey" final="restriction"/>
<xsd:element name="toKey" type="uddi:businessKey" final="restriction"/>

<xsd:element name="keyedReference" type="uddi:keyedReference" final="restriction"/>
<xsd:complexType name="keyedReference" final="restriction">
 <xsd:attribute name="tModelKey" type="uddi:tModelKey" use="required"/>
 <xsd:attribute name="keyName" type="uddi:keyName" use="optional" default=""/>
 <xsd:attribute name="keyValue" type="uddi:keyValue" use="required"/>
</xsd:complexType>

Figure A.15: publisherAssertion-structure in UDDI V3.

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 24 RTO-TR-IST-061

The <publisherAssertion> element is filled as follow:
• The /publisherAssertion/fromKey element contains the businessKey to the nation.
• The /publisherAssertion/toKey element contains the businessKey to the Asset.
• The /publisherAssertion/keyedReference element contains a reference to the uddi-

org:relationships tModel and the value of the key is “parent-child”.

In Figure A.16 the information that will be published regarding the relation between Nations and Assets
are illustrated. Nations contains assets, and Assets belong to a Nation.

Figure A.16: Relation between Nations and Assets.

A.6.3.5 Relationships between Assets and COIs

This relationship is modeled in the same way as between Assets and Nations. A more sophisticated model
– which is not realized in UDDI – is described in Section A.4.6.

A.6.3.6 Relationships between Different Assets

Since this relationship is not required for demonstration purposes it SHOULD NOT be used in the CWID
2006 demonstrator. If this functionality is wanted, this can be specified as an extension at a later stage.

A.6.4 What Metadata to Publish about Each Service
The metadata that describes each service is important, because it is going to be used to locate relevant
service descriptions, and if the information about each available service is not good enough, locating these
descriptions will become hard.

The metadata to publish about each service will be:

1. The name of the service
2. A short description of the service
3. Information about who published the service
4. The service type according to a service taxonomy
5. The coverage area of the service
6. The physical location of a service
7. What kind of information the service is providing
8. The topics the service is publishing to.
9. Various timestamps

a. Published
b. Valid until

10. Security metadata (see security in UDDI)
a. Label
b. Signature

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 25

11. Service interface descriptions
a. see section about publishing WSDL in UDDI below.

12. The DistinguishedName (LDAP)

These metadata will be referred to as information items in the sub sections below.

A.6.4.1 Metadata about Services in the Registry

The information about services will be put into the businessService-structure (Figure A.17), the
bindingTemplate-structure (Figure A.19) and the tModel-structure (Figure A.10) in the UDDI registry.

Figure A.17 shows the structure of the businessService-element in the UDDI registry.

<xsd:element name="businessService" type="uddi:businessService" final="restriction"/>
<xsd:complexType name="businessService" final="restriction">
 <xsd:sequence>
 <xsd:element ref="uddi:name" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="uddi:description" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="uddi:bindingTemplates" minOccurs="0"/>
 <xsd:element ref="uddi:categoryBag" minOccurs="0"/>
 <xsd:element ref="dsig:Signature" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="serviceKey" type="uddi:serviceKey" use="optional"/>
 <xsd:attribute name="businessKey" type="uddi:businessKey" use="optional"/>
</xsd:complexType>

Figure A.17: businessService-structure in UDDI V3.

The <businessService> element is filled as follows:
• The /businessService/name element contains information item 1.
• The /businessService/description element contains information item 2.
• The /businessService/bindingTemplates element contains bindingTemplates for this service.
• The /businessService/categoryBag element contains keyedReferences referencing

(Information items 4-10, and partially information item 11):
o The Service Taxonomy tModel and the value of the key is the type of service this

service is.
o The General Keywords Category System tModel where the value of the keyName

attribute is “SecurityLabel” and the value of the key is the appropriate label.
o The Position tModel and the value of the key is a URL-address specifying the location

where one can retrieve an XML document containing the current position to the service.
o The Published tModel and the value of the key is the date and time when the service was

published into the service registry. The valid format for this is: YYYY-MM-
DDThh:mm:ss±hh:mm.

o The Valid Until tModel and the value of the key is the date and time when the service no
longer will be available in the service registry The valid format for this is: YYYY-MM-
DDThh:mm:ss±hh:mm.

o The WSDL Entity Type tModel and the value of the key is ”service”.
o The XML Namespace tModel and the value of the key is the namespace of the WSDL

document containing the service. The value contained in the
/definitions/@targetNamespace attribute in the WSDL document describing the
service.

o The XML Local Name tModel and the value of the key is the value of the attribute
/definitions/service/@name in the WSDL document describing the service.

o various topic tModels capturing the topics this service publishes to.

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 26 RTO-TR-IST-061

o various Information Provided tModels capturing the kind of information this service
provides.

• The /businessService/categoryBag element also contains keyedReferenceGroups referencing
(Information item 5):

o The CoverageArea tModel which specifies that the contained keyedReferences makes
up a coverage area in the form of a rectangle. The contained keyReferences references:

 The Longitude tModel where the value of the keyName attribute is
“upperLeft” and the value of the keyValue attribute is the longitude of the
upper left corner of the rectangle given in decimal degrees.

 The Latitude tModel where the value of the keyName attribute is
“upperLeft” and the value of the keyValue attribute is the latitude of the upper
left corner of the rectangle given in decimal degrees.

 The Longitude tModel where the value of the keyName attribute is
“lowerLeft” and the value of the keyValue attribute is the longitude of the
lower left corner of the rectangle given in decimal degrees.

 The Latitude tModel where the value of the keyName attribute is
“lowerLeft” and the value of the keyValue attribute is the latitude of the lower
left corner of the rectangle given in decimal degrees.

• The /businessService/dsig:Signature element contains the signature of the service
description.

• The /businessService/@serviceKey attribute is set to the key attributed to this
<businessService> element.

• The businessService/@businessKey attribute is set to the businessKey of the containing
businessEntity. This businessEntity will be a nation or an asset.

Figure A.18 illustrates how the information about each service will be published into the businessService-
structure in the UDDI registry.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 27

Figure A.18: Service information.

The General Keywords Category System tModel can be used to represent the metadata, or custom tModels
can be created to represent a namespace/category. We see examples of both strategies in Figure A.18. The
difference between the strategies is that during a search in the UDDI registry both the keyName- and the
keyValue- attribute are relevant when searching for something described with the General Keywords
tModel, whereas only the keyValue attribute is relevant in a search when using a custom tModel.

A.6.4.1.1 The bindingTemplate element

Figure A.19 shows the structure of the bindingTemplate-element in the UDDI registry. Also shown is the
sub structure tModelInstanceDetails and its sub structures.

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 28 RTO-TR-IST-061

<xsd:element name="bindingTemplate" type="uddi:bindingTemplate" final="restriction"/>
<xsd:complexType name="bindingTemplate" final="restriction">
 <xsd:sequence>
 <xsd:element ref="uddi:description" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:choice>
 <xsd:element ref="uddi:accessPoint"/>
 <xsd:element ref="uddi:hostingRedirector"/>
 </xsd:choice>
 <xsd:element ref="uddi:tModelInstanceDetails" minOccurs="0"/>
 <xsd:element ref="uddi:categoryBag" minOccurs="0"/>
 <xsd:element ref="dsig:Signature" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="bindingKey" type="uddi:bindingKey" use="optional"/>
 <xsd:attribute name="serviceKey" type="uddi:serviceKey" use="optional"/>
</xsd:complexType>

<xsd:element name="tModelInstanceDetails" type="uddi:tModelInstanceDetails"
 final="restriction"/>
<xsd:complexType name="tModelInstanceDetails" final="restriction">
 <xsd:sequence>
 <xsd:element ref="uddi:tModelInstanceInfo" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:element name="tModelInstanceInfo" type="uddi:tModelInstanceInfo"
 final="restriction"/>
<xsd:complexType name="tModelInstanceInfo" final="restriction">
 <xsd:sequence>
 <xsd:element ref="uddi:description" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="uddi:instanceDetails" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="tModelKey" type="uddi:tModelKey" use="required"/>
</xsd:complexType>

<xsd:element name="instanceDetails" type="uddi:instanceDetails" final="restriction"/>
<xsd:complexType name="instanceDetails" final="restriction">
 <xsd:sequence>
 <xsd:element ref="uddi:description" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:choice>
 <xsd:sequence>
 <xsd:element ref="uddi:overviewDoc" maxOccurs="unbounded"/>
 <xsd:element ref="uddi:instanceParms" minOccurs="0"/>
 </xsd:sequence>
 <xsd:element ref="uddi:instanceParms"/>
 </xsd:choice>
 </xsd:sequence>
</xsd:complexType>

Figure A.19: bindingTemplate-structure in UDDI V3.

The <bindingTemplate> element is populated as follows (some of this information is related to
information item 11):

• The bindingTemplate/description element is not used.
• The bindingTemplate/accesspoint element has the value of the attribute

definitions/service/port/soap:address/@location in the WSDL document describing the
service. The bindingTemplate/accesspoint/@useType attribute has the value “http”.

• The bindingTemplate/hostingRedirector is not used
• The bindingTemplate/tModelInstanceDetails element is populated with two

tModelInstanceInfo elements (it can contain more tModelInstanceInfo-elements if it
implements more wsdl-bindings and wsdl-portTypes):

o The first tModelInstanceInfo element:
 The tModelInstanceInfo/description element is not used.
 The tModelInstanceInfo/instanceDetails/description is not used.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 29

 The tModelInstanceInfo/instanceDetails/overviewDoc is not used.
 the tModelInstanceInfo/instanceDetalis/instanceParms element has the

value of the attribute definitions/service/port/@name in the WSDL
document to the service

 The tModelInstanceInfo/@tModelKey attribute refers to the tModel that
implements the binding for this port.

o The second tModelInstanceInfo element
 The tModelInstanceInfo/description element is not used.
 The tModelInstanceInfo/instanceDetails is not used.
 The tModelInstanceInfo/@tModelKey attribute refers to the tModel that

implements the portType for this port’s binding.
• The bindingTemplate/categoryBag contains keyedReferences referencing:

o The General Keywords Category System tModel where the value of the keyName
attribute is “SecurityLabel” and the value of the key is the appropriate label.

o The Distinguished Name tModel where the value of the keyName attribute is
“DistinguishedName” and the value of the key is the LDAP distinguished name
associated with this service.

• The bindingTemplate/dsig:Signature contains the signature of the binding information.
• The bindingTemplate/@sbindingKey attribute is set to the key attributed to this

<bindingTemplate> element.
• The bindingTemplate/@serviceKey attribute is set to the serviceKey of the containing

businessService.

Figure A.20 illustrates how the information about each service will be published into the
bindingTemplate-structure in the UDDI registry.

Figure A.20: Service Binding Information.

A.6.4.2 Publishing WSDL Information in UDDI

OASIS has published a Technical note that describes how to publish WSDL information in UDDI [[2]] to
make it searchable. To be compliant with the service registry this specification must be followed. That

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 30 RTO-TR-IST-061

means that the tModels described in Appendix 2 in this technical note must be published and present in the
UDDI registry, to facilitate the mapping of WSDL entities into the UDDI registry.

The tModels from Annex B in [[2]] are:

1. WSDL Entity Type tModel
2. XML Namespace tModel
3. XML Local Name tModel
4. WSDL portType reference tModel
5. SOAP Protocol tModel
6. HTTP Protocol tModel
7. Protocol Categorization
8. Transport Categorization
9. WSDL Address tModel

Additional tModels must be present if for instance other protocols are to be used (XMPP instead of
HTTP). If HTTP is going to be used as the transport protocol, the HTTP Transport tModel must be
published in the UDDI registry. This tModel is described in chapter 11.3.3 in [[1]].

The actual mapping of a WSDL document to UDDI using these tModels is described in more detail in the
technical note from OASIS [[2]]. Figure A.21 and Figure A.22 illustrates this mapping by respectively
showing the structure of a WSDL document and the mapping from WSDL to UDDI.

Figure A.21: Components in a WSDL Document.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 31

Figure A.22: Mapping a WSDL Document into UDDI Structures.

As shown in the two figures above the information that must be extracted from the WSDL document is:
• the name and targetNamespace attributes of the portType.
• the name and targetNamespace attributes of the binding.
• information about transports protocols.
• the name attribute and targetNamespace of the service.
• the name attribute of the port.
• the location attribute from the soap:address tag.

From this information; two tModels, a businessService and a bindingTemplate are created to map the
WSDL document:

• a tModel that maps the portType section.
• a tModel that maps the binding section.
• a businessService that maps the service section.
• a bindingTemplate that maps the port section.

A.6.4.2.1 The portType tModel

The portType tModel represents the interface of the service and information in the portType section is
mapped to this tModel:

• The /tModel/name element contains the value of the /definitions/portType/@name attribute in
the WSDL document.

• The /tModel/description element is not used.
• The /tModel/overviewDoc/description element is not used.
• The /tModel/overviewDoc/overviewURL element contains the address to the corresponding

WSDL document.
• The /tModel/identifierBag element is not used.

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 32 RTO-TR-IST-061

• The /tModel/categoryBag element contains keyedReferences referencing:
o the WSDL Entity Type tModel and the value of the key is portType.
o the XML Namespace tModel and the value of the key is the namespace of the WSDL

document containing the portType.
o The General Keywords Category System tModel where the value of the keyName

attribute is “SecurityLabel” and the value of the key is the appropriate label (Not a
part of the OASIS technical note, but an addition by the RTG-027/IST-061 group).

• The /tModel/dsig:Signature contains the signature of the tModel information.
• The <tModel>/@<tModelKey> attribute is set to the key attributed to this <tModel> element.
• The <tModel>/@<deleted> attribute is not used.

A.6.4.2.2 The Binding tModel
The binding tModel captures the transports and encodings information from the binding section of the
WSDL Document:

• The /tModel/name element contains the value of the /definitions/binding/@name attribute in
the WSDL document.

• The /tModel/description element is not used.
• The /tModel/overviewDoc/description element is not used.
• The /tModel/overviewDoc/overviewURL links to the WSDL Document.
• The /tModel/identifierBag element is not used.
• The /tModel/categoryBag element contains keyedReferences referencing:

o the WSDL Entity Type tModel and the value of the key is “binding”
o the XML Namespace tModel and the value of the key is the namespace of the WSDL

document containing the binding.
o The WSDL portType reference tModel and the value of the key is the tModelKey of the

portType this binding implements.
o the UDDI Type Category System and the value of the key is “wsdlSpec”.
o various protocol tModels capturing what kind of protocols that are used.
o The General Keywords Category System tModel where the value of the keyName

attribute is “SecurityLabel” and the value of the key is the appropriate label (Not a
part of the OASIS technical note, but an addition by the RTG-027/IST-061 group).

• The /tModel/dsig:Signature contains the signature of the tModel information.
• The <tModel>/@<tModelKey> attribute is set to the key attributed to this <tModel> element.
• The <tModel>/@<deleted> attribute is not used.

A.6.4.2.3 The businessService and bindingTemplate
The information shown here in the businessService and the bindingTemplate elements do only reflect the
information mapped from the WSDL document describing the service. For a complete description of what
should be present in a businessService and a bindingTemplate element see Section A.6.4.1.

The businessService maps the service section of the WSDL document:

• The categoryBag of the businessService contains keyedReferences referencing:
o the WSDL Entity Type tModel and the value of the key is ”service”.
o the XML Namespace tModel and the value of the key is the namespace of the WSDL

document containing the service.
o the XML Local Name tModel and the value of the key is the value of the attribute

definitions/service/@name in the WSDL document.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 33

The bindingTemplate maps the port of the WSDL document:
• The accessPoint element has the value of the attribute

definitions/service/port/soap:address/@location in the WSDL document.
• Two tModelInstanceInfo elements is created:

o The first tModelInstanceInfo element
 the @tModelKey attribute refers to the tModel that implements the binding for this

port.
 the instanceDetalis/instanceParms element has the value of the attribute

definitions/service/port/@name in the WSDL document
o The second tModelInstanceInfo element

 the @tModelKey attribute refers to the tModel that implements the portType for
this port’s binding.

A.6.4.2.4 An Example

To make things clearer an example is provided that show how this mapping is done in practice. For
detailed explanation of the mapping, see [[2]]. The WSDL document used as the basis for the example is
one for a fictitious weather service for the area around Lakselv (see Figure A.23).

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 34 RTO-TR-IST-061

<?xml version="1.0" encoding="utf-8"?>
<definitions name="Weather"
 targetNamespace=”http://test.com/weather/”
 xmlns:tns=”http://test.com/weather/”
 xmlns:xsd1=”http://test.com/weather/schema/”
 xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types>
 <xs:schema targetNamespace=”http://test.com/weather/schema/”
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="weatherRequest" type="xs:string"/>
 <xs:element name="weatherInformation" type="xs:string"/>
 </xs:schema>
 </types>

 <message name="GetWeatherRequest">
 <part name="body" element="xsd1:weatherRequest"/>
 </message>
 <message name="WeatherInformation">
 <part name="body" element="xsd1:weatherInformation"/>
 </message>

 <portType name="WeatherPortType">
 <operation name="GetWeatherInformation">
 <input message="tns:GetWeatherRequest"/>
 <output message="tns:WeatherInformation"/>
 </operation>
 </portType>

 <binding name="WeatherSoapBinding" type="tns:WeatherPortType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="GetWeatherInformation">
 <soap:operation soapAction="http://test.com/GetWeatherInformation"/>
 <input><soap:body use="literal"/></input>
 <output><soap:body use="literal"/></output>
 </operation>
 </binding>

 <service name="WeatherService">
 <port name="WeatherPort" binding="tns:WeatherSoapBinding">
 <soap:address location="http://accesspoint.of.service"/>
 </port>
 </service>

</definitions>

Figure A.23: A sample WSDL document

There are four parts of the WSDL document above that are going to be mapped over to UDDI structures.
The elements in question are the portType, the binding, the service and the port elements. As shown in
Figure A.22 and Figure A.23 they are respectively mapped to a tModel, a tModel, a businessService and a
bindingTemplate.

Below in Figure A.24, Figure A.25 and Figure A.26 this mapping is done. The tModels and the
businessService contains references to the tModels listed above in Section A.6.4.2 as keyedReferences in
their categoryBag. At the right side of each figure it is indicated which tModel that is being referenced in
the categoryBag.

Maps to a
tModel

Maps to a
tModel

Maps to a
business-
Service and a
binding-
Template.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 35

<tModel tModelKey="uddi:e8cf1163-8234-4b35-865f-94a7322e40c3">
 <name>WeatherPortType</name>
 <overviewDoc>
 <overviewURL>http://location.of.wsdl.document</overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference tModelKey="uddi:uddi.org:xml:namespace"
 keyName="portType namespace"
 keyValue="http://test.com/weather/"/>
 <keyedReference tModelKey="uddi:uddi.org:wsdl:types"
 keyName="WSDL type"
 keyValue="portType"/>
 </categoryBag>
</tModel>

Figure A.24: tModel Representing the portType.

<tModel tModelKey="uddi:49662926-f4a5-4ba5-b8d0-32ab388dadda">
 <name>WeatherSoapBinding</name>
 <overviewDoc>
 <overviewURL>http://location.of.wsdl.document</overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference tModelKey="uddi:uddi.org:xml:namespace"
 keyName="binding namespace"
 keyValue="http://test.com/weather/"/>
 <keyedReference tModelKey="uddi:uddi.org:wsdl:types"
 keyName="WSDL type"
 keyValue="binding"/>
 <keyedReference tModelKey="uddi:uddi.org:wsdl:porttypereference"
 keyName="portType reference"
 keyValue="uddi:e8cf1163-8234-4b35-865f-94a7322e40c3"/>
 <keyedReference tModelKey="uddi:uddi.org:wsdl:categorization:protocol"
 keyName="SOAP protocol"
 keyValue="uddi:uddi.org:protocol:soap"/>
 <keyedReference tModelKey="uddi:uddi.org:wsdl:categorization:transport"
 keyName="HTTP transport"
 keyValue="uddi:uddi.org:transport:http"/>
 <keyedReference tModelKey="uddi:uddi.org:categorization:types"
 keyName="uddi-org:types"
 keyValue="wsdlSpec"/>
 </categoryBag>
</tModel>

Figure A.25: tModel Representing the Binding.

XML Namespace tModel

WSDL Entity
Type tModel

WSDL Portype
reference tModel

SOAP Protocol tModel

HTTP Transport
tModel

UDDI Types
Category System

WSDL Entity
Type tModel

XML Name-
space tModel

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 36 RTO-TR-IST-061

<businessService serviceKey="uddi:102b114a-52e0-4af4-a292-02700da543d4"
 businessKey="uddi:1e65ea29-4e0f-4807-8098-d352d7b10368">
 <name>Weather service in Lakselv</name>
 <bindingTemplates>
 <bindingTemplate bindingKey="uddi:f793c521-0daf-434c-8700-0e32da232e74"
 serviceKey="uddi:102b114a-52e0-4af4-a292-02700da543d4">
 <accessPoint useType="http">http://accesspoint.of.service</accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo tModelKey="uddi:49662926-f4a5-4ba5-b8d0-32ab388dadda">
 <description xml:lang="en">wsdl:binding that this wsdl:port implements.
 The instanceParms specifies the port local name.
 </description>
 <instanceDetails>
 <instanceParms>WeatherPort</instanceParms>
 </instanceDetails>
 </tModelInstanceInfo>
 <tModelInstanceInfo tModelKey="uddi:e8cf1163-8234-4b35-865f-94a7322e40c3">
 <description xml:lang="en">wsdl:portType that this wsdl:port implements.
 </description>
 </tModelInstanceInfo>
 </tModelInstanceDetails>
 </bindingTemplate>
 </bindingTemplates>
 <categoryBag>
 <keyedReference tModelKey="uddi:uddi.org:wsdl:types"
 keyName="WSDL type"
 keyValue="service"/>
 <keyedReference tModelKey="uddi:uddi.org:xml:namespace"
 keyName="service namespace"
 keyValue="http://test.com/weather/"/>
 <keyedReference tModelKey="uddi:uddi.org:xml:localname"
 keyName="service local name"
 keyValue="WeatherService"/>
 </categoryBag>
</businessService>

Figure A.26: businessService and bindingTemplate Representing the Service and Port Elements.

For each of the services published in the UDDI registry this information about their WSDL description has
to be registered in the UDDI registry.

A.6.5 Modelling of Topics in UDDI
In the same manner the UDDI registry provides links to the WSDL schemas of the services, the UDDI
registry can provide links to the XML schemas of the topics produced for all the COIs.

Thus, it becomes possible for an application to retrieve (to discover) the XML schema corresponding to a
topic and to consider advanced computing, e.g. building of XSL style sheets to map the topic flow
generated/received for a COI to internal representations.

tModels will be used to model topics and topic spaces, with some canonical tModels (see Appendix 1) to
categorize them. References to topic-tModels can be put in the categoryBag of the businessService-
elements in the UDDI data model, to indicate that that service provides information according to specific
topics.

In Figure A.27 an example is shown about what information to register about topics and topic spaces.

Mapping
of port-
element
in the
WSDL

WSDL Entity
Type tModel

XML Name-
space tModel

XML Local
Name tModel

Reference to the
tModel for the
implemented
wsdl binding.

Reference to the
tModel for the
implemented
porttype

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 37

Figure A.27: Modelling of Topics in UDDI.

The someTopicSpace-tModel represents a topic space. Each topic space is given a name, a description, and
a link to an XML file that describes the topic space completely. In addition it will be classified according
to a topicCategorization scheme with the value “topicSpace”, and it will be given an XML namespace that
scopes all contained topics.

The someTopic-tModel represents a topic. Each topic is given a name, a description and a link to an XML
file that describes the topic completely. In addition it will be classified according to a topicCategorization
scheme with the value “rootTopic”, and it will be given a reference to the topic space it belongs to.

A.6.5.1 How to Publish this Information into the Service Registry

The structure of a tModel is given in Figure A.10. The predefined tModels used to categorize a topic and a
topic space is given in Annex B.

A.6.5.1.1 Topic Space

The <tModel> element which describes a topicSpace must be populated as follow:
• The /tModel/name element is set to the string “%s1” with %s1 set to the name of the topic space.
• The /tModel/description element is set to the string “Topic space for the %s1 namespace”

with %s1 set to the namespace of the topic space.
• The /tModel/overviewDoc/description element is set to the string “XML Schema for the

topic space: %s1”, where %s1 is set to the name of the topic space.
• The /tModel/overviewDoc/overviewURL element is set to the path which contains the XML

schema corresponding to the topic.
• The /tModel/identifierBag element is empty.
• The /tModel/categoryBag element contains keyedReferences referencing:

o the Topic Categorization tModel and the value of the key is “topicSpace”
o the XML Namespace tModel and the value of the key is the namespace of topic space.
o The General Keywords Category System tModel where the value of the keyName

attribute is “SecurityLabel” and the value of the key is the appropriate label.
• The /tModel/dsig:Signature contains the signature of the tModel information.
• The <tModel>/@<tModelKey> attribute is set to the key attributed to this <tModel> element.
• The <tModel>/@<deleted> attribute is not used.

An example of this structure is shown in Figure A.28, where a tModel referencing the XML document of
the topic space for the ISR XML namespace is illustrated.

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 38 RTO-TR-IST-061

<tModel tModelKey="uddi:111111-6C7F-11DA-B1A0-FECD280E8AB2">
 <name>ISR Topic space</name>
 <description xml:lang="en">Topic space for the ISR namespace</description>
 <overviewDoc>
 <description xml:lang="en">
 XML Document for the topic space: ISR Topic space
 </description>
 <overviewURL>http://url.to.xml.document.for.the.topic.space</overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference tModelKey="uddi:A41915D0-4C6B-11DA-95D0-BD45C7FAF23E"
 keyName="TopicCategorization"
 keyValue="TopicSpace" />
 <keyedReference tModelKey="uddi:uddi.org:xml:namespace"
 keyName="topic space namespace"
 keyValue="ISR" />
 <keyedReference tModelKey="uddi:uddi.org:categorization:general_keywords"
 keyName="SecurityLabel"
 keyValue="NATO Secret" />
 </categoryBag>
 <dsig:Signature>---some signature---</dsig:Signature>
</tModel>

Figure A.28: Description of a Topic Space using a <tModel> Element.

A.6.5.1.2 Topic

The <tModel> element which describes a topic must be populated as follows:
1. The /tModel/name element is set to the string “%s1:%s2” with %s1 set to the namespace of the

topic and %s2 set to the name of the topic.
2. The /tModel/description element is set to the string “XML schema of the topic: %s1:%s2”

with %s1 set to the namespace of the topic and %s2 set to the name of the topic
3. The tModel/overviewDoc/description element is set to the same string as the

/tModel/description element.
4. The /tModel/overviewDoc/overviewURL element is set to the path which contains the XML

schema corresponding to the topic.
5. The /tModel/identifierBag element is empty.
6. The /tModel/categoryBag element contains keyedReferences referencing:

o the Topic Categorization tModel and the value of the key is “rootTopic”
o the Topic Space reference tModel and the value of the key is the tModelKey of the

topic space that this topic belongs to.
o The General Keywords Category System tModel where the value of the keyName

attribute is “SecurityLabel” and the value of the key is the appropriate label.
• The /tModel/dsig:Signature contains the signature of the tModel information.
• The <tModel>/@<tModelKey> attribute is set to the key attributed to this <tModel> element.
• The <tModel>/@<deleted> attribute is not used.

And example of this structure is shown in Figure A.29, where a tModel referencing the XML schema of
the Track topic for the ISR XML namespace is illustrated.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 39

<tModel tModelKey="uddi:667E71A0-6C7F-11DA-B1A0-FECD280E8AB2">
 <name>ISR:Track</name>
 <description xml:lang="en">XML Schema of the topic: ISR:Track</description>
 <overviewDoc>
 <description xml:lang="en">XML Schema of the topic: ISR: Track</description>
 <overviewURL>http://url.of.the.xsd.document.describing.the.Track.topic
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference tModelKey="uddi:A41915D0-4C6B-11DA-95D0-BD45C7FAF23E"
 keyName="TopicCategorization"
 keyValue="RootTopic" />
 <keyedReference tModelKey="uddi:A63DCA90-4C6B-11DA-8A90-FEE8FA5DB743"
 keyName="TopicSpaceReference"
 keyValue="uuid:11111111-6C7F-11DA-B1A0-FECD280E8AB2" />
 <keyedReference tModelKey="uddi:uddi.org:categorization:general_keywords"
 keyName="SecurityLabel"
 keyValue="NATO Secret" />
 </categoryBag>
 <dsig:Signature>---some signature---</dsig:Signature>
</tModel>

Figure A.29: Description of the Topic itself using a <tModel> Element.

A.6.6 Security in UDDI
The information stored in the service registry regarding security will be a label and a signature. This
information is not something a publisher will have to provide, this will solely be the responsibility of the
abstraction layer to do. The responsibility of the publisher regarding security will be to provide a label in
the SOAP-header, and to sign the SOAP message that is sent to the service registry. It is important that the
SOAP-label reflects the real security level of the UDDI information.

The label information will be put by the abstraction layer in the categoryBag on the businessEntity-, the
businessService-, the bindingTemplate- and the tModel-elements as a keyedReference that references
the General Keyword Category System tModel in the tModelKey attribute. The keyName-attribute will
contain the value “SecurityLabel” and the keyValue will contain the corresponding value.

The signature information will be stored in the dsig:Signature element in the businessEntity-, the
businessService-, the bindingTemplate- and the tModel-elements.

For more information on the security in UDDI please refer to Section A.7.7.

A sample of the different entities with a security label specified is shown below:

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 40 RTO-TR-IST-061

<businessEntity
 businessKey="uddi:74DC9A70-1620-11DA-A75E-D5F9C7FC0CA9">
 <name>Lakselv weather organization</name>
 <description>Provides weather information from Lakselv.</description>
 <contacts>
 <contact useType="Administrator">
 <personName>Anders Langmyr</personName>
 <phone>+4763807796</phone>
 <email>Anders.Langmyr@ffi.no</email>
 </contact>
 </contacts>
 <categoryBag>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:general_keywords"
 keyName="SecurityLabel"
 keyValue="The value of the label"/>
 </categoryBag>
<dsig:Signature>----Some signature---</dsig:Signature>
</businessEntity>

Figure A.30: businessEntity.

<businessService
 businessKey="uddi:74DC9A70-1620-11DA-A75E-D5F9C7FC0CA9"
 serviceKey="uddi:F5BFDFF0-1623-11DA-A75E-B9D6F00D57AC">
 <name>Lakselv weather service</name>
 <description>Weather updates from the north.</description>
 <categoryBag>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:general_keywords"
 keyName="SecurityLabel"
 keyValue="The value of the label"/>
 </categoryBag>
 <dsig:Signature>----Some signature---</dsig:Signature>
</businessService>

Figure A.31: businessService.

<bindingTemplate bindingKey="uddi:f793c521-0daf-434c-8700-0e32da232e74"
 serviceKey="uddi:F5BFDFF0-1623-11DA-A75E-B9D6F00D57AC">
 <accessPoint URLType="http">http://accesspoint.of.service</accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo tModelKey="uddi:e8cf1163-8234-4b35-865f-94a7322e40c3" />
 </tModelInstanceDetails>
 <categoryBag>
 <keyedReference tModelKey="uddi:uddi.org:categorization:general_keywords"
 keyName="SecurityLabel"
 keyValue="The value of the label"/>
 </categoryBag>
 <dsig:Signature>----Some signature---</dsig:Signature>
</bindingTemplate>

Figure A.32: bindingTemplate.

<tModel
 tModelKey="uddi:e8cf1163-8234-4b35-865f-94a7322e40c3">
 <name>uddi-org:weather:types</name>
 <description xml:lang="en">Weather types</description>
 <overviewDoc>
 <description xml:lang="en">Previous statistics</description>
 <overviewURL>Link to somewhere</overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:general_keywords"
 keyName="SecurityLabel"
 keyValue="The value of the label"/>
 </categoryBag>
 <dsig:Signature>----Some signature---</dsig:Signature>
</tModel>

Figure A.33: tModel.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 41

A.6.7 Publishing Services into the Registry
The UDDI V3 Publication API will be used to publish information regarding nations, assets, COIs,
relationships between nations and assets, and relationships between assets and COIs into the service
registry. Before using this API a valid UDDI V3 authToken must be retrieved, see Section A.7.6.2 for
more details and on security processing on the Publishing API in general.

Relating to the publishing of services into the service registry, the UDDI V3 Publication API call
save_services SHALL NOT be used. To make it easier for the publisher to publish a service, the service
registry will accept an XML document containing all information about the different services to publish so
that the publisher only have to make one publishing call. This is illustrated in Figure A.34. Publishing of
services in the service registry should be performed by using the publishServices call defined in Section
A.6.7.1.

Figure A.34: Publication of a Service.

In addition, publisher-assigned keys SHALL NOT be used, the UDDI registry is responsible for key
generation.

A.6.7.1 Save Services with the publishServices Call
The publishServices call is a special purpose extension to the UDDI Publishing API Set. This call MUST
be used to save services in the service registry. This call adds or updates one or more businessServices
elements.

The wsdl documents are known in advance and a reference to the predefined wsdl document to be used
must be given. The information in the WSDL document is used to create the businessService,
bindingTemplate and tModels that are necessary to publish the service. This is done following the
procedure described in Section A.6.4.2. After that the metadata in the second part of the XML document is
added to the businessService-element. When this is done the service can be published. Note that the
tModels has to be published first.

After that the metadata in the publishServices call is added to the businessService-element. When this is
done the service can be published. Note that the tModels has to be published first.

A businessService in a UDDI registry MUST always be attached to a businessEntity, so a
businessIdentitifier (e.g. a UDDI:businessKey, or a custom made) must be given in order to affiliate the
service to a businessEntity. This businessIdentifier is given as a metadata-element in the metadataBag.
The businessEntity in question may be a nation or an asset, it cannot be a COI.

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 42 RTO-TR-IST-061

The abstraction layer will transform this call into a UDDI save_service call and forward this to the UDDI
registry.

The syntax of the publishService is explained in short below. For further details on the generation of such
messages please refer to the XML schema in Appendix 7. Details on the metadata can be found in Section
A.6.4.

A.6.7.1.1 Syntax

Figure A.35: Syntax of the publishServices Message.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 43

A.6.7.1.2 Arguments

• authInfo: Required element that contain the following elements:
o uddi:authInfo: Required element. Contains an authentication token obtained by using the

get_authToken call of the UDDI Security Policy API Set.
• Service: Required and repeating element containing the metadata to be used to publish a service.

If multiple services are present all will be have the same security label, please refere to Section
A.7.6.2. A service element contain the following metada:

o serviceName: Required element that provides the name of the service, textual
information. This is mapped to the name variable of the UDDI businessService structure.

o description: Required element that provides a textual description of the service. This is
mapped to the description element of the UDDI businessService structure.

o validUntil: Required element that defines the period of when this service is valid.
o serviceEndpoint: Required element. This is the endpoint where the service may be

contacted represented as an URI.
o distinguishedName: Required element. Contains the unique distinquished name of the

certificate connected with the service in LDAP. This information is used by a potential
service client to retrieve the correct public key to encrypt requests to the service.

o wsdlReference: Required element. Contain a string reference to the well known wsdl
document to be used as a basis for the service publishing.

o businessIdString: Required element. Contain a string reference to the UDDI business
entity that the service will be linked to. This may either be a Nation, COI or Asset. This
string must be identical to the identification string registered in the identifierBag of the
business entity in question. It is used by the Abstraction Layer to retrieve the correct
business key.

o serviceKey: Optional element. This element MUST be present if an already existing
service is beeing updated. If it is a new service this MUST be ommited since the UDDI
registry is responsible for key generation.

o serviceTaxonomy: Optional element. Used to classify a service.
o topic: Optional and repeating element. Used to describe the topics the a notification

service may publish on. If the service in question is a notificatin service it SHOULD have
at least have one topic. Else if the service in question is of a request/response type of web
service it MUST NOT have any topics associated.

o position: Optional element. This is the endpoint of a service implementing a well known
wsdl for retrieving the posistion of the service. The position service MUST implement the
wsdl file presented in Appendix 8.

o coverageArea: Optional element. The content of this element make up a geographic
coverage area of a service in form of a rectangle. The details of this element are
represented in the figure below. It should be noted that the lowerRight element is identical
to the upperLeft element which is fully expanded in the figure.

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 44 RTO-TR-IST-061

Figure A.36: Syntax of the coverageArea Element.

A.6.7.1.3 Returns and Error Reporting

Purpose made SOAP faults will be produced if security processing or validation of the publishServices
message fails.

If the request is validated to be correct and forwarded to the UDDI registry, both returns and value
reporting will be compliant with the returns of the UDDI V3 specification.

A.6.7.2 Resetting the Service Registry with resetRegistry Call

In some cases the ability too reset the content of the registry may be of importance. These cases include
testing purposes and other. By reset it is in this case understood deleting all service records of a nation. It
must be emphasized that functionality must only be used for demonstration management.

This functionality is realized using the special purpose resetRegistry call defined as an extension to the
Publication API Set of UDDI V.3. The syntax of the publishService is explained in short below. For
further details please refer to the XML schema in Appendix 7.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 45

A.6.7.2.1 Syntax

Figure A.37: Syntax of the resetRegistry Element.

A.6.7.2.2 Arguments

• Nation: mandatory argument containing the two letter nation code of the nation of which services
should be deleted.

A.6.7.2.3 Returns and Error Reporting

Standard SOAP fault messages will be used.

A.6.8 What Extra Search Functionality is Required
There are some queries that cannot be satisfied by the UDDI registry. For instance lets say that services
are registered in the registry with geographic coordinates specifying their location. If one wants to do a
geographic search to find all services within a specified geographic area, the UDDI registry does not
provide any means to do this.

The solution to be used in the service registry is to add an abstraction layer on top of UDDI, which will
implement the extra search functionality. It is important to be aware of this and find out what extra search
capabilities is required, if there is any.

A.6.9 Service Termination Policies
In dynamic environments the availability of services may not be stable. It is important that the UDDI
registry reflect the services that are actually available on the network. There are two separate ways a
service can leave the network. The first being graceful termination where the service is able to clean up
after itself. The second case is ungraceful termination, where the service is terminated abruptly without
being able to clean up after itself.

The UDDI registry has only functionality to handle the first case by providing delete methods for every
entity in the UDDI data model. The second case is not supported; as UDDI does not have any built-in
functionality to enforce for instance an expiration date or a valid until property. If an ungraceful
termination happens UDDI will be left in an inconsistent state, containing service description for a
terminated service. This means that external actions must be taken to ensure the consistency of the registry
content.

The solution used in the service registry will be to require service descriptions to contain a domain-
specific attribute, called “valid until” as mentioned in Section A.6.4. This attribute specifies the

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 46 RTO-TR-IST-061

validity interval for the service. The service providers will have to update the service description regularly
to extend the validity interval, if the validity interval is exceeded the service is assumed dead and removed
from the service registry. This functionality will be implemented by the service termination component of
the abstraction layer.

A.6.10 Searching the Service Registry
The UDDI V3 inquiry API will be used to query the service registry. If extended search capabilities are
incorporated in the service registry, additional findQualifiers must be defined, that can be used to indicate
what type of extended search functionality is requested.

For a description of the security considerations when using the Inquiry API please refer to Section A.7.6.1.

A.6.11 Data Structures in UDDI – Exemplified
Since it has been identified a need to be more specific about terms like ”publisher”, ”provider” (of
services) and ”user” with respect to the planned CWID demo implementation, this chapter describes a set
of demo-relevant UDDI contents as an example. Hopefully, this may also give some answers to the
question ”What’s a service and what’s an asset?”.

The example is taken from the Norwegian demo: Consider an Order of Battle with three main units, each
deployed in their own ”machine” (Picture Compilation Node, PCN): Headquarter (HQ), Frigate and UAV.
Each PCN is able to deliver two pub/sub services, let’s call them MTI Tracks (COI=ISR) and COP
(COI=C2).

This will result in the following data structures in UDDI:

UDDI-record Name Type / Topic
NO Nation
ISR COI
C2 COI
HQ Asset
Frigate Asset

BusinessEntity

UAV Asset
PublisherAssertion - from NO to each of the assets HQ, Frigate or UAV -
PublisherAssertion - from both COI to all three Assets -

HQ.MTI Topic=ISR
HQ.COP Topic=C2
Frigate.MTI Topic=ISR
Frigate.COP Topic=C2
UAV.MTI Topic=ISR

BusinessService

UAV.COP Topic=C2
BindingTemplates - one for each BusinessService -

These structures may also be visualized as a hierarchy, see Figure A.38.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 47

BusinessEntity
<<Nation>>

NO

BusinessEntity
<<Asset>>

HQ

BusinessEntity
<<Asset>>

Frigate

BusinessEntity
<<Asset>>

UAV

BusinessService
MTI (ISR)

BusinessService
COP (C2)

BusinessService
COP (C2)

BusinessService
MTI (ISR)

BindingTemplate BindingTemplate BindingTemplate BindingTemplate

BusinessEntity
<<COI>>

ISR

BusinessEntity
<<COI>>

C2

BusinessEntity
<<Nation>>

NO

BusinessEntity
<<Asset>>

HQ

BusinessEntity
<<Asset>>

Frigate

BusinessEntity
<<Asset>>

UAV

BusinessService
MTI (ISR)

BusinessService
COP (C2)

BusinessService
COP (C2)

BusinessService
MTI (ISR)

BindingTemplate BindingTemplate BindingTemplate BindingTemplate

BusinessEntity
<<COI>>

ISR

BusinessEntity
<<COI>>

C2

Implemented by
PublisherAssertions

RTG027:
Predefined
structures

Figure A.38: Example of Norwegian Hierarchy.

The PublisherAssertions connecting COI and Assets, will not be used in the demo. In the future they may
be used to describe allowed (and real) production and consumption of sets of topics.

Figure A.39 describes how the asset ”HQ” is connected to the COI ”C2”, referring to the set of topics
”NO-C2-topics” (containing topics T3 and T4) as Allowed Production. It is assumed that this is to be
interpreted as allowing HQ to publish services on topics T3 and T4 (but not on T1/T2). Similarly, the
other assets should be connected to their COI’s and sets of topics.

BusinessEntity
<<COI>>

ISR

BusinessEntity
<<COI>>

C2

tModel
<<SetOfTopics>>

NO-ISR-topics

tModel
<<SetOfTopics>>

NO-C2-topics

T1 T2 T3 T4

Topic space

BusinessEntity
<<Asset>>

HQ

PublisherAssertion

tModel
<<ProdConsCat>>
Allowed Production

Figure A.39: Assets, COIs and Topics.

Note that the linking of COIs and Assets shown here, will not be implemented for the CWID demo.

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 48 RTO-TR-IST-061

One of the main functions for RTG027 is the service publishing function. This will be done by sending an
XML file to the service registry, giving all the necessary details for the service to be saved in UDDI.

Service publishing input will include an unique reference to the BusinessEntity that the service is to be
placed under.

Metadata about BusinessEntities is kept at a minimum level of complexity. To clarify the basic elements,
contents of a Nation, a COI and an Asset is exemplified below.

Element name Nation Asset COI
name NO HQ ISR
description Norway as part of RTG027 Norwegian Headquarter Tactical level track info
contacts TBD TBD
businessServices <zero or more services> <zero or more services>
signature TBD (security) TBD (security) TBD (security)
identifierBag (>tModel) nation:no/no (>tModel) asset:no/HQ (>tModel) coi:no/isr

(>tModel) Nation (>tModel) Asset (>tModel) COI
(>tModel) <security label> (>tModel) <security label> (>tModel) <security label>

categoryBag

 (>tModel) Categorization

A.6.12 References
[1] OASIS, UDDI version 3.0.2, UDDI Spec Technical Committee Draft, http://uddi.org/pubs/uddi_

v3.htm, 2004.

[2] OASIS, Using WSDL in a UDDI Registry, Version 2.0.2, Technical Note, http://www.oasis-open.
org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v202-20040631.htm, 2004.

[3] OASIS, UDDI version 2.03 Data Structure Reference, UDDI Committee Specification, http://uddi.
org/pubs/DataStructure_v2.htm, 2002.

[4] OASIS, UDDI version 2.04 API Specification, UDDI Committee Specification, http://uddi.org/
pubs/ProgrammersAPI_v2.htm, 2002.

[5] jUDDI, open source java implementation of UDDI V2 by Apache, http://ws.apache.org/juddi/, 2005.

[6] UDDI solutions, http://www.uddi.org/solutions.html.

http://uddi.org/pubs/uddi_v3.htm
http://uddi.org/pubs/uddi_v3.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v202-20040631.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v202-20040631.htm
http://uddi.org/pubs/DataStructure_v2.htm
http://uddi.org/pubs/DataStructure_v2.htm
http://uddi.org/pubs/ProgrammersAPI_v2.htm
http://uddi.org/pubs/ProgrammersAPI_v2.htm
http://ws.apache.org/juddi/
http://www.uddi.org/solutions.html

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 49

A.7 SECURITY SPECIFICATION

This section describes the end-to-end security services and related specifications/standards to be used in
Secure Web Services Demonstrator of the NATO RTO/IST-061.

The security solutions described are based on the use of existing civil or military standards where possible,
supported by solutions developed especially for this demonstrator.

A.7.1 Security Architecture
This Security architecture describes a set of national border LANs interconnected through CWID WAN
and using XML Security Domain Guards. XML Security Domain Guards are used for access control of the
information entering and leaving the national domains. Each national LAN contains a Web Service
Provider and a Directory. The services, that a nation wants to share with its allies is replicated to the Web
Service Provider of the LAN. In addition, one of the nations (or the NATO organization) will provide a
Main Web Service Registry for looking up services published by the nations. Other nations may have a
Local Web Service Registry, which may be synchronized with the Main service registry. The Directory
systems are used for replication of X.509 Certificates and Certificate Revocation Lists (CRLs). The
System Protection Components (SPC) will provide the end-to-end security processing of the Web Services
components.

A.7.2 Security Functionality to be Demonstrated
The security services described in this document are provided in order to protect the services of the Web
Services Providers and the Web Services Registry (and the traffic exchanged between the Consumers,
Providers and Registry) from unauthorized manipulation, disclosure and access. This section describes
three security “packages”, which will be implemented in the demonstrator.

A.7.2.1 Security Package 1: XML Security Filtering Between Domains

The aim of this security package is to show how XML security labels may be securely bound to the SOAP
messages (using digital signatures) in order to allow for release control of the information passing between
security domains. XML Security Domain Guards will inspect the SOAP messages being passed between
the domains and control the signature and the security label attached in order to make release control
decision.

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 50 RTO-TR-IST-061

CWID

PURPLE
WAN

Nation 2

Main
Service
Registry

Service
Provider

LDAP
Directory

Nation 1

Local
Service
Registry

LDAP
Directory

Service
Provider

Secured
Web

Services
Gateway

 SPC
 SPC

 SPC

Service
Provider

LDAP
Directory

 SPC

 SPC

Service
Consumer

 SPC

Service
Consumer

 SPC

 SPC

Service
Consumer

Nation N

Firewall

Firewall

Figure A.40: The Figure Shows the Security Model of the Distributed
Demonstrator. The securityfunctionality (SPC) may be placed in

the end systems or in an Secured Web services Gateway.

A.7.2.2 Security Package 2: Differentiated Access Control of Information Objects

Access control is a means of enforcing the authorization of users to access the information. The aim of this
demonstration package is to show how security labels bond to the information objects and user privileges
may be used to allow for differentiated access control of the Service Registry and the Service Provider.
XML security labels may be securely bound to the information objects of the Web Service Provider and
the Web Service Registry by use of digital signatures. User privileges will indicate what type of
information the user is allowed to access. In this demonstrator we will for simplicity include the user
privileges in the users certificate in the form of a XML security label (this is not a very dynamic solution
for an operational system). The access control will be enforced by comparing the users privileges included
in the certificate with the information in the security label attached to the information.

A.7.2.3 Security Package 3: End-to-End Authentication, Integrity and Confidentiality

The aim of this security package is to show how the security services Integrity, Authentication and
Confidentiality may be used to secure the SOAP messages in transit between the Service Consumers,
Service Providers and the Service Registry.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 51

A.7.2.3.1 Integrity

The Integrity service provides an indication to the recipients of the transmitted information whether the
information has been modified, deleted or substituted without authorization. This security service will be
achieved by hashing and digitally signing the XML information to be protected.

A.7.2.3.2 Authentication

The Authentication service gives assurance of the identity of some entity (a person, a process or a system).
It is the means of gaining confidence that an originator of the information is who he claims to be. This
security service will be achieved by hashing and digitally signing the XML information to be protected.

A.7.2.3.3 Confidentiality

The End-to-end Confidentiality service cryptographically protects the content of the SOAP message
against disclosure. End-to-end Confidentiality can help to enforce need to know restrictions, or enables
multiple different user communities to share the same network. The service is independent of the network
and systems transporting the message. The content of the SOAP messages will be encrypted during
transport, but the information will not be encrypted during storage in the Service Provider or Service
Registry because of the requirement to have access to the metadata when invoking services or retrieving
UDDI records.

A.7.3 SOAP Message Security
All SOAP messages SHALL be secured using the OASIS standard Web Services Security v1.0. [WS-
Security 2004-OASIS 200401].

The specifications to be implemented are: Web Services Security: SOAP Message Security 1.0 (WS-
Security 2004).

The “mustUnderstand” attribute for this element SHALL be set to “true” for the WSS header.

Available Freeware:
http://java.sun.com/webservices/downloads/webservicespack.html

A.7.3.1 XML Signature Details

See Section A.7.9 and Appendix 3 for algorithm and certificate specifications.

A.7.3.2 XML Encryption Details

The triple DES algorithm SHALL be used for symmetric encryption. Symmetric encryption keys SHALL
be encrypted using the recipients public key and conveyed with the SOAP message as described in the
xenc:EncryptedKey section of the [WS-Security 2004-OASIS 200401] specification.

A.7.3.3 Timestamp

Security Timestamps SHALL be used as defined by the [WS-Security 2004-OASIS 200401] specification.

A.7.3.4 SOAP XML Security Label

It SHALL be possible to attach a XML security label to the SOAP message. The
InformationSecurityLabel (see Section A.7.4.1) SHALL always be present and will indicate the sensitivity

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://java.sun.com/webservices/downloads/webservicespack.html

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 52 RTO-TR-IST-061

of the information attached. This Information Security Label will be used for release control of the SOAP
messages by the XML Guards.

A.7.3.5 SOAP Addressing Heading Extension

In order to be able to perform the required security filtering of the outbound traffic in the XML Security
Domain Guard, the SOAP header must be extended with an address field. This address filed SHALL be
based on the [WS-Addressing-Core] specification:

?xml version="1.0" encoding="UTF-8"?>
<S11:Envelope xmlns:S11="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <s:Header>
 <wsa:To> http://www.client.org/Endpoint…. </wsa:To>
 </s:Header>
 <s:Body>
 …..
 </s:Body>
</s:Envelope>

This address and the InformationSecurityLabel of the SOAP header MAY be used by the XML Security
Domain Guard for filtering of information leaving a security domain. See Section A.7.8.

A.7.3.6 Elements to be Signed

An example of a SOAP message with all the header fields is shown below. Note that some sub elements
are not included.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 53

 <ds:Signature>
 <ds:SignedInfo>
 ...
 <ds:Reference URI="#to">
 ...
 </ds:Reference>
 <ds:Reference URI="#from">
 ...
 </ds:Reference>
 <ds:Reference URI="#messageID">
 </ds:Reference>
 <ds:Reference URI="#timestamp">
 ...
 </ds:Reference>
 <ds:Reference URI="#informationSecurityLabel">
 ...
 </ds:Reference>
 <ds:Reference URI="#bodypart">
 ..
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>Hp1z….
 </ds:SignatureValue>
 <ds:KeyInfo>
 <ds:X509Data>
 <ds:X509IssuerSerial>
 <ds:X509IssuerName>CN=FFI Sub CA….
 </X509IssuerName>
 <ds:X509SerialNumber>1234
 </ds:X509SerialNumber>
 </ds:X509IssuerSerial>
 <ds:X509SubjectName>CN=FFI Sender….
 </ds:X509SubjectName>
 </ds:X509Data>
 </ds:KeyInfo>
 ...
 </ds:Signature>
<?xml version="1.0" encoding="UTF-8"?>
<S11:Envelope xmlns:S11="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsa="http://www.w3.org/2005/08/addressing”
xmlns:wsse=”http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd”
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
xmlns:ds=”http://www.w3.org/2000/09/xmldsig#” xmlns:xenc="http://www.w3.org/2001/04/xmlenc#”>
 <S11:Header>
 <wsa:To wsu:Id="to">...</wsa:To>
 <wsa:From wsu:Id="from">...</wsa:From>
 <wsa:MessageID wsu:Id="messageID">...</wsa:MessageID>
 <wsse:Security S11:mustUnderstand="true">
 <wsu:Timestamp wsu:Id="timestamp">
 ...
 </wsu:Timestamp>
 <slab:SecurityLabel xmlns:slab="…">
 <slab:LabeledObjectGroup Id="informationSecurityLabel">
 ...
 </slab:LabeledObjectGroup>
 </slab:SecurityLabel>
 <ds:Signature>
 <ds:SignedInfo>
 ...
 <ds:Reference URI="#to">
 ...
 </ds:Reference>
 <ds:Reference URI="#from">
 ...
 </ds:Reference>
 <ds:Reference URI="#messageID">
 <ds:Reference>
 <ds:Reference URI="#timestamp">
 ...
 </ds:Reference>
 <ds:Reference URI="#informationSecurityLabel">
 ...
 <ds:Reference>
 <ds:Reference URI="#bodypart">
 ..
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>Hp1z….
 </ds:SignatureValue>
 <ds:KeyInfo>
 <ds:X509Data>

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 54 RTO-TR-IST-061

 <ds:X509IssuerSerial>
 <ds:X509IssuerName>CN=FFI Sub CA….
 </X509IssuerName>
 <ds:X509SerialNumber>1234
 </ds:X509SerialNumber>
 </ds:X509IssuerSerial>
 <ds:X509SubjectName>CN=FFI Sender…
 </ds:X509SubjectName>
 </ds:X509Data>
 </ds:KeyInfo>
 ...
 </ds:Signature>
 <xenc:EncryptedKey>
 ...
 <xenc:ReferenceList>
 <xenc:DataReference URI="#encryptedBodypart"/>
 </xenc:ReferenceList>
 <xenc:CipherData>
 <xenc:CipherValue>... (encypted sym key)
 </xenc:CipherValue>
 </xenc:CipherData>
 <ds:KeyInfo>
 <ds:X509Data>
 <ds:X509IssuerSerial>
 <ds:X509IssuerName>CN=FFI Sub CA….
 </X509IssuerName>
 <ds:X509SerialNumber>5678
 </ds:X509SerialNumber>
 </ds:X509IssuerSerial>
 <ds:X509SubjectName>CN=FFI Receiver…
 </ds:X509SubjectName>
 </ds:X509Data>
 </ds:KeyInfo>
 </xenc:EncryptedKey>
 </wsse:Security>
 </S11:Header>
 <S11:Body wsu:Id="bodypart">
 <xenc:EncryptedData Id="encryptedBodypart">

 <xenc:CipherData>
 <xenc:CipherValue>...(encrypted body)...</xenc:CipherValue>
 </xenc:CipherData>
 </xenc:EncryptedData>
 </S11:Body>
</S11:Envelope>

The following elements SHALL be signed

- wsa:To
- wsa:From
- wsa:MessageID
- wsu:Timestamp
- "informationSecurityLabel"
- “bodypart”, includes the “encryptedBodypart”

The KeyInfo in the EncryptedKey element SHALL be used to identify the encryption certificate, i.e. the
public key, used by the sender to encrypt the symmetric key.

The KeyInfo in the Signature element SHALL be used to identify the senders signing certificate, i.e. the
public key needed to verify the signature.

In order to reduce the message size, certificates SHALL never be included in the SOAP message. The
certificates used SHALL be identified by the X509IssuerSerial and X509SubjectName elements.

A.7.4 XML Security Label Definition
Security Labels provides an indication of the security policy, sensitivity, compartments, and other
handling caveats associated with the information. The Security labels can be used for purposes such as
access control of information objects or a source for security guard functions to control the information
being exchanged between domains.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 55

The sensitivity information in a security label can be compared with a user’s security privileges in order to
determine if the user is allowed to access the services or advertisements of the services. Access controls
are performed in each domain in accordance with the security policy in force.

A.7.4.1 The Information Security Label Syntax and Processing Specification

The InformationSecurityLabel describes the sensitivity of the encrypted content. It is anticipated that the
SOAP header do not contain any classified information. This label is therefore also used to indicate the
sensitivity of the whole SOAP message. This label is processed by the XML domain security guards.

The Detached XML Security Label syntax as defined in Section A4.2.1 and A4.2.4.1 of Appendix 4
SHALL be used, but the ID of the LabelledObjectGroup of the security label element SHALL be set to
“informationSecurityLabel” as shown in the example below. The rational for this is to be able to
distinguish between the security labels when they both are attached to the SOAP message. The Security
Label attached to the UDDI records is of this type. The namespace http://nc3a.nato.int/2004/06/xmlslab#
shall be used.

<slab:SecurityLabel xmlns:slab="http://nc3a.nato.int/2004/06/xmlslab#">
 <slab:LabeledObjectGroup Id="informationSecurityLabel">
 <slab:ConfidentialityLabel>
 <slab:SecurityPolicyIdentifier>
 RTO-IST-061-Mission
 </slab:SecurityPolicyIdentifier>
 <slab:SecurityClassification>
 SECRET
 </slab:SecurityClassification>
 </slab:ConfidentialityLabel>
 </slab:LabeledObjectGroup>
</slab:SecurityLabel>

A.7.4.2 XML Label Guidance

See Appendix 5, Section A5.1.

A.7.5 Security Privileges
In this demonstrator a simplified privilege management solution will be used. The security privileges of a
user will be defined using a security label (as defined in Section A.7.4) The security privileges of a user,
will be compared to the security label of the Notification, Service Response or the UDDI record according
to the matching rules defined in Section A.7.5.4. The security privileges of a “user” will be stored in the
certificate of the “user” as defined in Section A.7.5.2. This is not a very dynamic solution, but is used in
the demonstrator for simplicity reasons. A “user” may e.g. be a person, role, user-groups, COI or any other
entity that may logically be attached security privileges.

A.7.5.1 The Privilege Security Label Syntax and Processing Specification

The Detached XML Security Label syntax as defined in section A4.2.1 of Appendix 4 SHALL be used,
the ID of the LabelledObjectGroup of the security label element SHALL be set to
“privilegeSecurityLabel” as shown in the example below.

http://nc3a.nato.int/2004/06/xmlslab

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 56 RTO-TR-IST-061

<slab:SecurityLabel xmlns:slab="http://nc3a.nato.int/2004/06/xmlslab#">
 <slab:LabeledObjectGroup Id="privilegeSecurityLabel">
 <slab:ConfidentialityLabel>
 <slab:SecurityPolicyIdentifier>
 RTO-IST-061-Mission
 </slab:SecurityPolicyIdentifier>
 <slab:SecurityClassification>
 SECRET
 </slab:SecurityClassification>
 </slab:ConfidentialityLabel>
 </slab:LabeledObjectGroup>
</slab:SecurityLabel>

A.7.5.2 Certificate Extension for the Privilege Security Label

The Privilege Security Label SHALL be added as a certificate extension:

privilegeSecurityLabel EXTENSION :: = {

SYNTAX PrivilegeSecurityLabel
 IDENTIFIED BY id-privilegeSecurityLabel }

id-privilegeSecurityLabel OBJECT IDENTIFIER ::= 2 16 578 1 2 1 28 724 99

Where privilegeSecurityLabel is a XML Security Label as defined in Appendix 4.

Note that the object identifier is selected for this demonstrator only and is not registered.

Example:
…
SEQUENCE {
 OBJECT IDENTIFIER 2.16.578.1.2.1.28.724.99
 OCTET STRING
 <?xml version=”1.0”?><SecurityLabel>…

A.7.5.3 Privilege Label Semantics

• SecurityPolicyIdentifier: Identifies which security policy to be used for

evaluating these privileges.
• SecurityClassification: Indicate the highest classification this user is

allowed to access.
• PrivacyMark: Not Used.
• SecurityCategories: Indicates which nation, alliance, Role and/or

Community of Interest (COI) the user belongs to.

See Appendix 5 for more details.

A.7.5.4 Security Label and Privilege Label Matching Rules

See Appendix 5, Section A5.2.

A.7.6 Securing the Web Service Registry
This section describes how to implement security in the Service Registry based on version 3 of the OASIS
UDDI specification.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 57

UDDI v.3 defines APIs for access to the data within the service registry. Two of these are the Inquiry API,
which may be used for searching for records and the Publish API, which may be used for insertion and
updates of records. In order to secure these interfaces and enforce differentiated access control on the
stored records, we have introduced a System Protection Component (SPC) as part of the Security
Abstraction Layer in front of the UDDI APIs. This security abstraction layer will perform the WSS related
security processing of the SOAP messages (authentication, signature handling and encryption), in addition
to performing differentiated access control on the UDDI records based on the security labels of the UDDI
records and the privileges in the user certificates.

Figure A.41: Shows the Relation between the Client, the UDDI SPC, and the UDDI Registry.
A Security Protection Component (SPC) is placed in front of the UDDI Inquiry

and Publish APIs in order to perform the defined Security Processing.

A.7.6.1 Inquiry API

Access to the methods of the UDDI Inquiry API Set is restricted to users with a valid certificate, and that
the SOAP message is correctly signed and encrypted. Access to the information in the result set is
controlled comparing the security label of the UDDI records with the privileges in the user’s certificate.

For initial testing: If execution is in security mode off, the Inquiry API is publicly accessible.

On inquiry, the security element of the SOAP header SHALL contain an Information Security Label (as
defined in Section A.7.4.1). The InformationSecurityLabel will indicate the sensitivity of the information
contained in the SOAP message.

The security label is defined in Section A.7.4 and SHALL be placed in the WSS Security element of the
SOAP header (extension). The security label SHALL be bound to the content of the SOAP message by the
digital signature in the security element of the SOAP header.

A.7.6.1.1 Security processing of the Security Protection Component

On reception of a SOAP message from the UDDI client containing any of the UDDI v3 Inquiry API
“find” or “get” calls described in the standard, the following (or equivalent) processing SHALL be
performed by the Security Protection Component.

1. Inspect the keyInfo element of the XML signature in the SOAP header in order to retrieve the
X509IssuerSerial and X509SubjectName, which together can uniquely identify the user’s signing
certificate. Use this information to fetch the certificate with the User Privileges from the LDAP
Directory.

2. Validate the signature to see if the request comes from a trusted UDDI client.
3. If the signature validation process is OK, store the User Privileges for control against the Security

Labels of the returned records (if any) from the UDDI Inquiry function.
4. Inspect the keyInfo element of the XML encryption in the SOAP header in order to retrieve the

signature X509IssuerSerial and X509SubjectName, which together can uniquely identify the
certificate used to encrypt the symmetric key. Use this information to fetch the certificate.

5. Decrypt the SOAP message content and retrieve the Inquiry API function call.

Abstraction
Layer

UDDI
Client

UDDI v3
Services
Registry SPC

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 58 RTO-TR-IST-061

6. Decompress the SOAP content.
7. Invoke the Inquiry API function using the standard UDDI Inquiry API.

When the Inquiry API function returns, traverse the list of records returned, validate the signature and
inspect the Security Label for each one of them and build a list of records that matches the user’s
privileges.

8. Compress, Encrypt, label, sign and return the list of records to the UDDI client if not empty, else
return any other valid response. The classification of the InformationLabel attached to the SOAP
message SHALL be set to the highest classification of the included UDDI records.

A.7.6.2 Publish API: Security Processing of the Security Protection Component

In order to be allowed to publish to the registry, a publisher must be listed in the Access Control List of
the registry. The publisher must first receive an authToken by invoking the get_authToken method in the
Security Policy API Set. This authToken can be used to invoke a publish via the Publication API Set.

All the SOAP messages must be encrypted, labeled and signed correctly, if not the message will not be
forwarded to the backend UDDI registry.

Several services may be published in the same publish message given that they have equivalent security
labels. If the services have different security labels, they must be published using one publish message for
each variation of the security label (ref. Section A.6.7.2). The security label from the SOAP message used
in the publish request, will be used to mark the records put into the UDDI registry. The SOAP message
used to send the publish response, will have the same security label as used for the publish request.

For initial testing: Even if execution of the demonstrator is in security mode off, a publisher must still
acquire an authToken.

On reception of a SOAP message from the UDDI client containing any of the UDDI v3 Publish API
described in the standard, the following security processing SHALL be performed by the Security
Protection Component:

1. Inspect the keyInfo element of the XML signature in the SOAP header in order to retrieve the
X509IssuerSerial and X509SubjectName, which together can uniquely identify the user signing
certificate. Use this information to fetch the certificate from the LDAP Directory.

2. Validate the signature to see if the request comes from a trusted UDDI client and check if the
signer is allowed to publish to the UDDI registry (comment: map the certificate ID against the
Auth Info access control mechanism in UDDI v2).

3. If the previous tests are OK, identify the encryption certificate and decrypt and decompress the
SOAP message content.

4. Validate the signature of the UDDI record in order not to put any invalid data into the UDDI
registry.

5. Invoke the Publish API function using the standard UDDI Publish API.
6. Compress, Encrypt, label, sign and return the response from the UDDI registry to the UDDI

client.

A.7.6.3 Binding an XML Security Label to the UDDI Records

The following processing SHALL be performed by the UDDI client before publishing the record to the
UDDI registry using the Publish API:

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 59

1. An XML Security Label SHALL be bound to each record published to the UDDI registry using an
XML Signature (see Section A.7.4 for details).

2. The SOAP message used for transfer SHALL then be encrypted and signed.

A.7.7 Securing the Web Service Provider

Figure A.42: Shows the Relation between the Client, the Web Service Provider SPC,
and the Web Service Provider. A Security Protection Component is

introduced in order to perform the defined Security Processing.

A.7.7.1 Securing WS Notification

The WS-BaseNotification standard makes a distinction between the roles NotificationConsumer and
Subscriber, but as described in the definition of a Subscriber in Section A.4.5, in this demonstrator context
the Subscriber will also be the Notification Consumer. Another important issue (ref. Section A.4.5) is
that WS-BrokeredNotification is not used in this specification. These restrictions influence the following
specification of the security functionality. Therefore, in the following we will use the term Subscriber to
mean both a Subscriber and the NotificationConsumer.

A.7.7.1.1 Notification Producer: Security processing on receipt of a Subscription Request

On reception of a SOAP message from the Subscriber containing a wsnt:Subscribe element, the following
(or equivalent) processing SHALL be performed by the NotificationProducer.

1. Inspect the keyInfo element of the XML signature in the SOAP header in order to retrieve the
X509IssuerSerial and X509SubjectName, which together can uniquely identify the signing
certificate. Use this information to fetch the certificate with the User Privileges from the LDAP
Directory.

2. Validate the signature to see if the request comes from a trusted Subscriber.
3. If the signature validation process is OK, store the User Privileges for later control against the

Security Label(s) of the Notifications.
4. Retrive the encryption certificate and decrypt and decompress the SOAP message content.
5. The NotificationProducer SHALL create a Subscription Resource for the Subscription. The User

Privileges found in the certificate SHALL be included in this Subscription Resource for matching
against the InformationSecurityLabel of the Notifications.

A.7.7.1.2 Notification Producer: Security Processing on Generation of Notifications

When the Notification Producer has a notification to distribute, the NotificationProducer SHALL match
the InformationSecurityLabel in the SOAP message of the notification against the User Privileges
registered for each subscription. For each of the subscriptions it identifies a match, it shall issue the
Notification to the Subscriber associated with the subscription.

Abstraction
Layer

Client Service Processing

Web Service Provider

SPC

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 60 RTO-TR-IST-061

Each Notification sent SHALL be compressed, encrypted, labeled and signed by the Notification
Producer. The classification of the InformationLabel attached to the SOAP message SHALL be set to the
highest classification of the included information.

A.7.7.1.3 Notification Consumer

When a Subscriber sends a Subscribe message to a NotificationProducer, this SOAP message SHALL be
compressed, encrypted, labeled and signed. As for the security of the UDDI Inquiry API (see Section
A.7.6.1) the security element of the SOAP header SHALL contain an Information Security Label (as
defined in Section A.7.4.1). The InformationSecurityLabel will indicate the sensitivity of the information
contained in the SOAP message and will be used by the XML Security Domain Guards.

A.7.7.2 Securing Request/Response Interactions

Request and response interactions SHALL be secured using the same procedures and functionality as
described for the notifications in Section A.7.7.1.

A.7.8 The XML Security Domain Guard
XML security labels may be securely bound to the SOAP messages (using digital signatures) in order to
allow for release control of the information passing between security domains. The XML Security Domain
Guards SHALL inspect the SOAP messages being passed between the domains and verify the signature
and enforce release control based on the InformationSecurityLabel attached to the WSS security element
of the SOAP header. This release control will be required to ensure that only information allowed to be
released are leaving the national domain.

A.7.8.1 Outbound Traffic

The Security domain guard SHALL perform the following (or similar) processing based on the
information in the SOAP header:

1. Inspect the keyInfo element of the XML signature in the SOAP header in order to retrieve the
X509IssuerSerial and X509SubjectName, which together can uniquely identify the user signing
certificate. Use this information to fetch the certificate from the LDAP Directory.

2. Validate the signature
3. Check the InformationSecurityLabel in order to determine if the SOAP message is to be released

according to national policy.

A.7.9 PKI
The text in this section is based on the PKI specification of the military standard ACP 145 version 1.0.
Profiles for certificates and CRLs are included in Appendix 3. If there are any mismatches between this
text and the profiles for CWID 06, the profiles takes precedence.

A.7.9.1 Certificate Management

Each Nation has a PKI to support national Public Key (PK) enabled applications.

The National PKI should be designed to minimize the amount of information that would need to be
published to other nations. It is therefore recommended that the PKI should only consist of a root (self-
signing entity), a subordinate CA and the “user” (see Figure 7.4).

Trust is distributed amongst the systems via the exchange of the National PKI’s Root certificates (see
below). The Root certificates are placed into a "trust file," which the systems uses during digital signature

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 61

verification (see Figure 7.4). Only the PKI Root CA certificate is needed in the trust file because the CA
certificate and the certificate of the system who performed the signature will be available from the LDAP
Directory.

FR Demonstrator
Root

NO Demonstrator
Root

FR
 D

R
oot

G
E D

R
oot

PO
 D

R
oot

N
O

 D
R

oot
… Trust File

N
ATO

G
R

oot

FR CA NO CA

…

FR End Entity NO End Entity

Figure A.43: Demonstrator PKI Architecture.

A.7.9.2 Certificate Generation
The specific requirements for the Root CA certificate, Intermediate CA’s certificate(s), and “user’s”
certificate are included in Section A.7.9.6. The processing requirements for EEs can be found in Section
A.7.9.6.

A.7.9.3 Certificate Distribution

A.7.9.3.1 Root Certificate Distribution

Distribution of the National PKI’s Root Certificate is performed via LDAP or some other bilaterally
agreed mechanism. The National PKI’s Root Certificate contains the DER encoded public key certificate
of the Nation’s Root Certificate.

A.7.9.3.2 Intermediate CA Certificate(s) Distribution

Distribution of Intermediate CAs certificate is done via the pkiCA X.500 directory object class, as
described in Section A.7.10.7. The CA’s public key certificate is included in the cACertificate attribute.
Note that the CA’s directory entry and the directory name contained in the CA’s certificate issuer field
must match.

A.7.9.3.3 User Certificate Distribution

The “user’s’” public key certificate is distributed in the directory “user” entry as described in Section
A.7.9.3. The “user” in this context may e.g. be a person, organization, role, application, process, ….

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 62 RTO-TR-IST-061

A.7.9.4 Lifecycle

All subscribers of the PKI may, at one time or another, require new certificates. Root CAs, Intermediate
CAs, and End Entities may need new certificates to continue subscribing to the PKI after the validity date
in their certificate passes, to resubscribe to the PKI after their certificate has been compromised, and to
update some information bound in to the certificate (e.g., subject name or key). Various terms (e.g.,
renewal, rekey, update, reissue) are sometimes used to address the various scenarios but for simplicity this
specification will use the term renewal. Further, the procedures defined herein imply that the renewal
process will result in a name being bound to new key (i.e., a new key will be generated for the public key
certificate).

A.7.9.4.1 Root Certificate and Intermediate CA’s Certificate Renewal

For simplicity, the validity dates of the Nation’s Root Certificate and the CA Certificate SHALL be set to
a date that will not cause them to expire during the lifetime of the demonstrator.

A.7.9.4.2 ”User” Certificate Renewal

To support “user” certificate expiration (i.e., current date is past the validity date in the certificate), a new
certificate needs to be issued to the “user” and distributed via the procedure defined in Section A.7.9.3.
There is a need to generate a new “user” certificate prior to the end of the validity date because the new
“user” certificate has to be distributed in the Directory prior to use.

To support “user” certificate compromise, a new “user” certificate needs to be issued and distributed via
the procedures in Section A.7.9.3. Further revocation notifications must be generated and distributed via
the procedures in Section A.7.9.5.

A.7.9.5 Revocation Notification

Revocation of a National PKI Root CA or any Intermediate CA certificate(s) that was used to issue a
“user” certificate is a catastrophic event that requires immediate action be taken by each of the National
PKI Points of Contact (POC). For the lifetime of the demonstrator, revocation of the National PKI Root
CA or any Intermediate CA certificate(s) SHALL NOT be performed.

In the event of a “user” certificate revocation, all Nations with which the revoked “user” certificate has
been shared must be contacted to indicate that the “user” certificate has been revoked. If the “user’s”
certificate is to be renewed, a new private key needs to be generated and the corresponding public key
certificate needs to be distributed (see Section A.7.9.3). The CA that issued the old End Entity certificate
must issue and distribute a CRL indicating the old End Entity certificate is revoked.

CRL Issuance (update) will generally happen when a certificate has been revoked. However, all CAs
including Root CAs will be required to generate CRLs. If there are no revoked certificates the CAs are
required to publish an empty CRL (i.e., a CRL with no revoked certificates). The directory entry for a
particular CA contains the certificateRevocationList attribute in which all revoked certificates will be
included for at least one period beyond the revoked certificate’s validity period, as per paragraph 3.3 of
RFC 3280. The directory entry for a particular CA also contains the authorityRevocationList attribute in
which an exact copy of the contents of the certificateRevocationList attribute will be stored. Note that the
CA’s directory entry and the directory name contained in the CA’s CRL issuer field are the same.
The specific requirements for a CA’s CRL generation are included in Section A.7.9.7. The processing
requirements for EEs can also be found in those paragraphs.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 63

A.7.9.6 Public Key Certificates

This section specifies the Version 3 (V3) X.509 certificates as described in Recommendation X.509
(1997) and profiled in RFC 3280. The NATO certificate profiles are used and documented in Section
A.7.9.6. Three "types" of certificates are needed to support the demonstrator architecture. Three "types" of
certificates are described herein and are as depicted in Figure A.44.

Issued By: CA2
Issued To: EE
Public Key: Key3

Issued By: CA1
Issued To: CA2
Public Key: Key2

Issued By: CA1
Issued To: CA1
Public Key: Key1

Root CA Certificate

Intermediate CA Certificate

End Entity Certificate
Issued By: CA1
Issued To: EE
Public Key: Key3

Figure A.44: Demonstrator Certificate Types

Root CA certificates: – These certificates act as the trust anchors. As described in Section A.7.9.3 they
are exchanged between each Nation and are used by each Nation’s systems during digital signature
verification.

CA certificates: – These certificates are issued by the Root, and issue the “users’” certificates. They are
exchanged, as described in Section A.7.9.3 and are used by each Nation’s systems during digital signature
verification.

“User” certificates: – These certificates are issued by a intermediate CA. They are used by the National
systems to verify digitally signed information received. The private key corresponding to the public key in
the certificate is used to generate the digital signatures on the information to be protected. These
certificates SHALL also be used for encryption.

A.7.9.6.1 Public Key Certificate Profiles

The "profile" contained within this document is considered to be compliant to RFC 3280. There following
are additional constraints for National End Entities:

• Processing version is restricted to Version 3 public key certificates. National systems SHALL
only issue Version 3 certificates; therefore, it is unnecessary to support processing additional
values for version and the corresponding differences between the certificates.

Processing the following fields and extensions is technically required:

• Processing the authorityKeyIdentifier and subjectKeyIdentifier extensions is required.
• Marking keyUsage as critical.

The following two paragraphs describe specific implementation details for public key certificate fields and
extensions used to intercommunicate in this environment. CA implementation guidance is provided for
generating each field and extension and EE implementation guidance is also provided for processing each

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 64 RTO-TR-IST-061

field and extension. The fields described in Section A.7.9.6.2 are included in all certificates, while
inclusion of the extension in Section A.7.9.6.3 varies depending on the "type" of certificate. Annex A
provides a detailed profile for the different certificates.

A.7.9.6.2 Public Key Certificate Fields

Public Key Certificate Fields are as follows:

a. All certificates used within this environment shall indicate Version 3 (v3) by including the integer
value of two (2) in the version field. EEs shall support processing this field, but they need only
recognize Version 3 certificates.

b. CAs shall include the certificate’s serialNumber field in every certificate and it shall be a positive
integer that is shorter than 20 octets and unique for a particular CA. This may be accomplished by
the CAs maintaining and incrementing a counter to assign certificate serial numbers. Recipients
shall support processing this field.

c. The AlgorithmIdentifier in the signature field shall include the OID as per Table 7-2 of the
signature algorithm used to sign the certificate. Inclusion of the parameters is as per Table A.1.
The values included in this AlgorithmIdentifier field must be identical to those in the
AlgorithmIdentifier field in paragraph k, below. EEs shall support processing this field;
however, the parameters themselves are not used during signature verification.

d. The issuer’s Name in the issuer field shall contain the unique X.500 DN identifying the issuer.
CAs and EEs are required to support the following standard naming attribute types: country,
organization, organizational-unit, distinguished name qualifier, state or province name, common
name, and serial number.

e. The certificate validity period field contains two dates: notBefore and notAfter. Both the dates
shall be expressed as Greenwich Mean Time (GMT) (Zulu). Both notBefore and notAfter may be
encoded as either Coordinated Universal Time (UTCTime) or GeneralizedTime.2 Dates through
the year 2049 shall be encoded as UTCTime, and dates in 2050 or later shall be encoded as
GeneralizedTime. UTCTime shall include a two-digit year, two-digit month, two-digit day, two-
digit hours, two-digit minutes, and two-digit seconds terminated by a "Z" (i.e.,
YYMMDDHHMMSSZ). GeneralizedTime shall include a four-digit year, two-digit month, two-
digit day, two-digit hours, two-digit minutes, and two-digit seconds terminated by a "Z" (i.e.,
YYYYMMDDHHMMSSZ). The UTCTime year value shall be interpreted as follows:
• If YY is equal to or greater than 50, the year shall be 19YY.
• If YY is less than 50, the year shall be 20YY.

f. The Name in the subject field shall contain the X.500 DN of the subject. CAs and recipients are
required to support the following standard naming attribute types: country, organization,
organizational-unit, distinguished name qualifier, state or province name, common name, and
serial number. Unique subject names are accomplished through careful assignment by CAs, as
there are few systems.

g. The subjectPublicKeyInfo field shall contain the subject’s public key. CAs and recipients are
required to generate and processing, respectively, the sub-fields of subjectPublicKeyInfo as
follows:

2 The Distinguished Encoding Rules (DER) allow several methods for formatting UTCTime and GeneralizedTime. All

implementations shall use the same format to minimize signature verification problems. To ensure that UTCTime and
GeneralzedTime values are consistently formatted:

1. The "Z" format and shall always be employed; a time differential shall never be employed.

2. The seconds field (even when it is ‘00’) shall be present.

3. GeneralizedTime values shall not include fractional seconds.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 65

• algorithmIdentifier shall include the algorithm’s parameters in self-signed CA
certificates and may include the parameters in CA and End Entity certificates. If
parameters are included in this field they shall be used during signature verification.

• subjectPublicKey shall include the subject’s public key.

h. The issuerUniqueIdentifier field should not be generated within certificates used in the
demonstrator.

i. The subjectUniqueIdentifier should not be generated within certificates used in the
demonstrator.

j. The extension field shall be generated. See Section A.7.9.6.3 for a description of certificate

extensions.

k. The issuer’s signature shall be contained in the fields produced with the SIGNED Macro. The

OID of the signature algorithm used to generate the signature shall also be included and must
match the value present in paragraph c, above. Inclusion of the parameters is as per Table A.1.
However, these parameters shall not be used to verify signatures.

A.7.9.6.3 Public Key Certificate Extensions

Public Key Certificate Extensions are as follows:

a. The authorityKeyIdentifier extension shall be included in “user” and CA certificates to indicate
which of the issuer’s keys was used to sign the subject’s certificate. It is optional in self-signed
CA certificates. The keyIdentifier choice hall be used as the identifier method. Various methods
exist for creating the value; however, the value in field is not regenerated by EE applications
therefore CAs may either derived the value from the key or a method that generates a unique value
be used. EEs shall support processing this extension.

b. The subjectKeyIdentifier extension shall be included in all certificates. The keyIdentifier shall be

generated as specified above. EEs shall support processing this extension.

c. The keyUsage extension shall be included in EE and CA certificates, and it shall be marked as a

critical extension. This extension constrains the keying material in the certificate to a specific
purpose. CA certificates shall have the keyCertSign, cRLSign, digitalSignature, and
nonRepudiation bit set. In EE certificates, the digitalSignature, nonRepudiation,
keyEncipherment and dataEncipherment bits shall be set. There is no requirement on other bits.
EEs shall support processing this extension.

d. The basicConstraints extension shall be included in all CA certificates and it shall be marked

critical. Although processing of this extension in a “trusted” certificate is not required in the
CMDE, there exists the possibility that some certificate chain processing developers may write
their applications to require every certificate in a chain, including the "trusted” certificate
(possibly a self-signed certificate), to assert that they are CAs in a basic constraints extension. For
this reason, this extension shall be included in self-signed CA certificates. The cA BOOLEAN flag
shall be set to true in the CA and self-signed CA certificates. The extension is optional in EE
certificates; however, if a EE certificate has keyUsage as critical and keyCertSign not set, then the
EE certificate should not be confused with a CA certificate (i.e., a certificate signed by an EE with
a critical keyUsage extension and keyCertSign not set should be rejected as a CA certificate). EEs
shall support processing this extension.

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 66 RTO-TR-IST-061

A.7.9.6.4 Public Key Certificate Checking

Section 6 of RFC 3280 specifies a procedure for performing certification path verification. An
implementation shall be functionally equivalent to the external behaviour resulting from that procedure.
The algorithm used by a particular implementation to derive the correct outputs from the given inputs is
not standardized herein.

A.7.9.7 Certificate Revocation Lists

A.7.9.7.1 Certificate Revocation List Profiles

This section specifies the Version 2 (V2) X.509 Certificate Revocation List (CRL) as described in
Recommendation X.509 (1997) and profiled in RFC 3280. One "type" of CRL is needed to support the
demonstrator architecture. The "profile" contained within this document is considered to be compliant to
RFC 3280 and is identical to the NATO CRL profile. The following are the additional constraints:

• All CAs are required to generate CRLs, as it is the agreed revocation mechanism.
• RFC 3280 requires the ability to process version 1 CRLs; however, testing of this support is

unnecessary, as all CRLs issued by CA supporting the demonstrator architecture will be issuing
version 2 CRLs.

The following two paragraphs describe specific implementation details for CRLs fields and extensions
used to intercommunicate in this environment. CA implementation guidance is provided for generating
each field and extension and EE implementation guidance is also provided for processing each field and
extension. Annex B provides a detailed CRL profile.

A.7.9.7.2 Certificate Revocation List Fields

CRL fields are as follows:
a. CRLs created for use within this environment are based on the 1997 version of the X.509

standard. version shall have a value of 2.
b. The AlgorithmIdentifier in issuer’s signature field shall include the OID as per Table 7-2 of the

signature algorithm used to sign the CRL. Inclusion of the parameters is as per Table-7.1.
c. The issuer’s Name in the issuer field shall contain the unique X.500 DN identifying the issuer of

the CRL. CAs and EEs are required to support the following standard naming attribute types:
country, organization, organizational-unit, distinguished name qualifier, state or province name,
common name, and serial number.

d. CAs and EEs shall support the thisUpdate field. The CRL thisUpdate field contains one date that
shall be expressed as Greenwich Mean Time (GMT) (Zulu). thisUpdate may be encoded as either
Coordinated Universal Time (UTCTime) or GeneralizedTime.3 Dates through the year 2049 shall
be encoded as UTCTime, and dates in 2050 or later shall be encoded as GeneralizedTime.
UTCTime shall include a two-digit year, two-digit month, two-digit day, two-digit hours, two-
digit minutes, and two-digit seconds terminated by a "Z" (i.e., YYMMDDHHMMSSZ).
GeneralizedTime shall include a four-digit year, two-digit month, two-digit day, two-digit hours,
two-digit minutes, and two-digit seconds terminated by a "Z" (i.e., YYYYMMDDHHMMSSZ).
The UTCTime year value shall be interpreted as follows:

3 The Distinguished Encoding Rules (DER) allow several methods for formatting UTCTime and GeneralizedTime. All

implementations shall use the same format to minimize signature verification problems. To ensure that UTCTime and
GeneralzedTime values are consistently formatted:

1. The "Z" format and shall always be employed; a time differential shall never be employed.

2. The seconds field (even when it is ‘00’) shall be present.

3. GeneralizedTime values shall not include fractional seconds.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 67

• If YY is equal to or greater than 50, the year shall be 19YY.
• If YY is less than 50, the year shall be 20YY.

e. CAs and EEs shall support the nextUpdate field. The CRL nextUpdate field contains one date that
shall be expressed as Greenwich Mean Time (GMT) (Zulu). nextUpdate may be encoded as either
Coordinated Universal Time (UTCTime) or GeneralizedTime.4 Dates through the year 2049 shall
be encoded as UTCTime, and dates in 2050 or later shall be encoded as GeneralizedTime.
UTCTime shall include a two-digit year, two-digit month, two-digit day, two-digit hours, two-
digit minutes, and two-digit seconds terminated by a "Z" (i.e., YYMMDDHHMMSSZ).
GeneralizedTime shall include a four-digit year, two-digit month, two-digit day, two-digit hours,
two-digit minutes, and two-digit seconds terminated by a "Z" (i.e., YYYYMMDDHHMMSSZ).
The UTCTime year value shall be interpreted as follows:

• If YY is equal to or greater than 50, the year shall be 19YY.
• If YY is less than 50, the year shall be 20YY.

f. CAs and EEs shall support the revokedCertificates field. The revokedCertificates field shall
contain a sequence of revoked certificates, when the CA has revoked certificates. If the CA has no
revoked certificate, but must generate a CRL, then the revokedCertificates will be omitted. The
structure of this list shall be a sequence of certificate serial numbers and a revocationDate. The
revocation date expressed as Greenwich Mean Time (GMT) (Zulu), field may be encoded as
either Coordinated Universal Time (UTCTime) or GeneralizedTime.4 Dates through the year
2049 shall be encoded as UTCTime, and dates in 2050 or later shall be encoded as
GeneralizedTime. UTCTime shall include a two-digit year, two-digit month, two-digit day, two-
digit hours, two-digit minutes, and two-digit seconds terminated by a "Z" (i.e.,
YYMMDDHHMMSSZ). GeneralizedTime shall include a four-digit year, two-digit month, two-
digit day, two-digit hours, two-digit minutes, and two-digit seconds terminated by a "Z" (i.e.,
YYYYMMDDHHMMSSZ). The UTCTime year value shall be interpreted as follows:

• If YY is equal to or greater than 50, the year shall be 19YY.
• If YY is less than 50, the year shall be 20YY.

g. The crlExtensions shall be generated as specified in Appendix 3.

h. The issuer’s signature shall be contained in the fields produced with the SIGNED Macro. The

OID of the signature algorithm used to generate the signature shall also be included. Inclusion of
the parameters is as per Table-7.1. However, these parameters shall not be used to verify
signatures.

A.7.9.7.3 Certificate Revocation List Entry Extensions
Certificate Revocation List Entry Extensions are:

a. The reasonCode extension is optional for both processing and generating in a CRL entry. The
following reasons for revocation shall be indicated if this extension is supported: unspecified,
keyCompromise, cACompromise, affiliationChanged, superseded, and cessationOfOperation.
Each entry on a distributionPoint may indicate whether the certificate was revoked for
keyCompromise or cAComprmise.

b. The instructionCode extension is optional for both processing and generating in a CRL entry.

Placing certificates on hold will not be recognized across international boundaries.
Implementations checking CRLs are only concerned with whether a certificate is on the CRL or
not.

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 68 RTO-TR-IST-061

c. The invalidityDate extension is optional for both processing and generating in a CRL entry. The
invalidity date will not be recognized across international boundaries. Implementations checking
the CRL are only concerned with whether a certificate is on the CRL not when the user may have
considered the certificate invalid.

d. The certificateIssuer extension is optional for processing and generating in a CRL entry. It shall

be included in distribution point entries and it shall be marked as critical. The name form shall be
directoryName and it shall be equal to the issuer field of the revoked certificate. This entry
extension is optional in full CRLs (i.e., an authority does need to generate this extension in a CRL
if it revokes all of its own certificates and no other authority’s certificates.)

A.7.9.7.4 Certificate Revocation List Extensions

CRL Extensions are as follows:

a. The authorityKeyIdentifier extension shall be included in CRLs to indicate which of the issuer’s
keys was used to sign the CRL. The keyIdentifier field shall be used to identify the key. The
identifier shall be constructed as described in paragraph 534 a, which describes the certificate’s
authorityKeyIdentifier extension. All EEs shall support processing this extension.

A.7.9.7.5 Certificate Revocation List Checking

Section 6 of RFC 3280 specifies a procedure for performing certification path verification, which includes
verification of CRLs. An implementation shall be functionally equivalent to the external behaviour
resulting from that procedure. The algorithm used by a particular implementation to derive the correct
outputs from the given inputs is not specified herein.

A.7.9.8 Cryptography

This section specifies algorithm information, which must be consistent and interoperable between the
National systems.

At the application layer, currently only two algorithms are required to enable the agreed security services:
a hash algorithm and a digital signature algorithm. Specific information for the agreed hashing, Secure
Hash Algorithm (SHA-1), and digital signature algorithms, The RSA Algorithm4, is included herein.
Implementations are to support generating and verifying RSA.

A.7.9.9 Hash

The SHA –1 hashing algorithm SHALL be used for the demonstrator.

4 Note that there are two versions of the RSA Algorithm commonly referred to as the X9 version and PKCS v1.5. The version

included herein is the PKCS v1.5 certificate.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 69

Table A.1: Hashing Algorithm

Specification FIPS PUB 180-1, Secure Hash Standard 17 April 1995 NIST

OID iso(1) identified-organization(3) oiw(14) secsig(3) algorithm(2) SHA-1(26)

1.3.14.3.2.26

PARAMETER NULL

NIST OSI Implementers Workshop, Security Special Interest Group, Stable
Implementation Agreements: Part 12 - OS Security, June 1995

NULL parameters shall never be present when an id-sha1 Algorithm Identifier is
encoded.

(future) X9.57, Appendix 3

Block size 512-bits, 64-bytes

Hash value size 160-bits, 20-bytes

Padding 512-bits, 64-bytes

A message has length l < 2^64. Before it is input to the SHA-1, the message is padded
on the right as follows:

 a. "1" is appended. Example: if the original message is "01010000", this is padded to
"010100001".

 b. "0"s are appended. The number of "0"s will depend on the original length of the
message. The last 64-bits of the last 512-bit block are reserved for the length l of the
original message.

 c. Obtain the 2-word representation of l, the number of bits in the original message. If
l < 2^32 then the first word is all zeroes. Append these two words to the padded
message.

The padded message will contain 16 * n words for some n > 0. The padded message is
regarded as a sequence of n blocks M(1) , M(2), ... , M(n), where each M(i) contains
16 words and M(1) contains the first characters (or bits)of the message.

A.7.9.9.1 Digital Signature

RSA with SHA-1 (PKCS #1 version).

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 70 RTO-TR-IST-061

Table A.2: Certificate

Specification PKCS #1 RSA Encryption Standard ,Version 1.5, 1 November 1993

and

FIPS PUB 180-1, Secure Hash Standard, 17 April 1995, NIST

OID iso(1) member-body(2) US(840) rsadsi(113549) pkcs(1) pkcs-1(1)
sha1WithRSAEncryption(5)

1.2.840.113589.1.1.5

PARAMETER NULL

PKCS #1 RSA Encryption Standard, Version 1.5, 1 November 1993

and

FIPS PUB 180-1, Secure Hash Standard, 17 April 1995, NIST

Hash
Encapsulation

A block type BT, a padding string PS, and the data D shall be formatted into an octet
string EB, the encryption block.

 EB = 00 || BT || PS || 00 || D .

The block type BT shall be a single octet -- value 01.

The padding string PS shall consist of k-3-||D|| octets -- they shall have value FF

PKCS #1 RSA Encryption Standard, Version 1.5, 1 November 1993

ASN.1 encoding AN RSA signature (an INTEGER) is conveyed in a BIT STRING in the obvious way:
the most significant bit of the INTEGER becomes the most significant bit of the BIT
STRING, and the least significant bit of the INTEGER becomes the least significant
bit of the BIT STRING.

ISO/TC68/SC2/WG8 1997-08-18 ISO/WD-15782 Banking - Certificate Management

Table A.3: Algorithm

OID iso(1) member-body(2) US(840) rsadsi(113549) pkcs(1) pkcs-1(1) rsaEncryption(1)

1.2.840.113549.1.1.1

PARAMETER NULL

PKCS #1 RSA Encryption Standard, Version 1.5, 1 November 1993

Subject Public
Key

RSAPublicKey ::= SEQUENCE {

 modulus INTEGER, -- called n

 publicExponent INTEGER } -- called e

PKCS #1 RSA Encryption Standard, Version 1.5, 1 November 1993

Subject Public
Key Length

The key shall be 1024 bits in length.

A.7.9.9.2 Compromised Key Lists

Compromised Key Lists will not be used between nations.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 71

A.7.9.10 Available Freeware

OpenSSL: http://www.openssl.org/ (contains i.a. Certificate Authority (CA) software)

A.7.10 Directory

A.7.10.1 Main Principles

The main principles for the design of the directory are the following:
• The directory is implemented using the LDAP technology;
• The standard used for LDAP is LDAP V3;
• Each nation deploys its own LDAP server;
• Each nation is free of the choice of its LDAP COTS;
• Each nation populates its LDAP server with its own data (certificates, etc) under its branch;
• Each nation has a copy of the branches of the other nations (master to master replication with the

responsibility of one main branch attributed to only one LDAP server). This copy is done using a
replication software component able to forward directory information (LDIF format) cross the
SOAP/SPC guards. This replication component uses the NATO Data Publishing Network
deployed between the nations.

A.7.10.2 LDAP DIT

The Directory Information Tree (DIT) are organised as follow:
• The DIT is prefixed with a list of domain component (dc) names as described in the RFC 2247.

The top-level dc is NATO and the second level is IST061
• A country (C) is defined for each nation, e.g. c=fr or c=nl. These organisations names are children

of the dc prefix. Thus, for instance, the path to the Poland part of the DIT is c=pl,dc=IST061,
dc=NATO;

• The part of the DIT attached to a nation is relevant to this nation.

A.7.10.3 LDAP Servers Deployment

All the nations deploy an LDAP server. An LDAP server deployed by a nation contains:
• Its own data stored under its branch (certificates, CRL, etc),
• A copy of the data extracted from the other LDAP servers of the other nations. These copies are

stored under the branch of these nations.

http://www.openssl.org/

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 72 RTO-TR-IST-061

 Nation1

c = Nations
(Nations = NO,NL,GE,FR,PL)

Nation2

Copy of the Data of
Nation1 Copy of the Data of

Nation3

Data of Nation2

c = Nations
(Nations = NO,NL,GE,FR,PL)

Nation3

Copy of the Data of
Nation1 and Nation2 Data of Nation3

LDAP servers synchronization

 dc=IST061

c = Nations
(Nations = NO,NL,GE,FR,PL)

Data of Nation1
Copy of the Data of
Nation2 and Nation3

dc=NATO

dc=NATO

 dc=IST061
 dc=NATO

 dc=IST061

Figure A.45: The Figure Illustrates this Principle with the Deployment of 3 Nations.

Remark: This manner to deploy the LDAP infrastructure with no central management and point of failure
is closed to the view explained into the NNEC documents (NNEC is based on the federation of systems
paradigm).

A.7.10.4 Replication

A.7.10.4.1 Design Aspects to Take into Account

The design aspects to take into account for the replication between the LDAP servers are the following :
• There is no LDAP replication standard. The replication mechanisms supplied by the available

COTS are based on proprietary solutions, i.e. LDAP messages generated by the slurpd daemon for
OpenLDAP, SMTP messages for Active directory. Thus, it becomes very hard to synchronise
LDAP servers when they are not based on the same COTS (i.e. from an OpenLdap server for a
nation to an Active Directory for another nation).

• One possible solution is the use of a meta directory COTS which provides advanced capabilities
like transformation of DIT or LDAP entries. This solution has the following problems :
 These COTS are very expensive;
 The security solutions deployed in the demonstrator are based on the use of SOAP/XML

technologies (SOAP guard/SPC) while these COTS use LDAP requests.
 Some LDAP servers are difficult to synchronise, e.g. OpenLdap, because these COTS do not

provide a log accessible with LDAP requests.

A.7.10.4.2 Synchronisation Design

The design for the synchronisation of the LDAP servers is the following:
• A synchronisation component is deployed in front end of the LDAP server deployed by each

nation;
• Periodically, this synchronisation component extracts all the content of the branch of the nation

under an LDIF Form as described in the RFC 2849;

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 73

• The interoperable Publish/Subscribe services is used to send/receive this extracted content to the
other nations. The configuration of the publish/subscribe networking for this synchronisation is as
follow :
 A technical Topic named LDAP_SYNCHRONISATION is supplied. The payload attached to

this technical topic is the LDIF content.
 A technical COI named SYNCHRONISATION_BETWEEN_NATIONS is supplied.

• On the reception of a notification message containing an instance of the
LDAP_SYNCHRONISATION topic generated by a nation, the synchronisation component
populates the corresponding branch in its LDAP directory with the LDIF payload.

• Please see Appendix 9 for the XML schema to the LDAP synchronization component.

Remarks :
• Using the publish/subscribe services networked with the Secured Web Services infrastructure of

the demonstrator, it becomes possible to easily drop a synchronisation message in a secure SOAP
message.

• This design illustrates the fact that it is possible to integrate legacy applications with advanced
mechanisms (NEC like applications).

• In the demonstrator, there is no need to deploy complex synchronisation mechanisms based on the
transmission of deltas because the number of entries in the LDAP servers is small.

A.7.10.4.3 Synchronisation Period
The synchronisation period must be easily configurable to adapt it to the deployment, i.e. number of
nations, number of entries in the LDAP servers, efficiency to import data in the LDAP servers.

A nation may decide to send the content of its branch before to wait to the next period, i.e. to reflect
immediately to the other nations that a certificate becomes revoked. (i.e. a manually total update.)

A.7.10.4.4 Bootstrapping/Handshake
The use of the secured publish/subscribe services to synchronise the LDAP servers of the nations imposes
to know the mandatory bootstrapping certificates. These certificates cannot be known using the
synchronisation component. So, it is mandatory for a nation to give the certificate attributed to the
synchronisation component to the other nations using the mechanism used to give the PKI root certificate.
Bootstrapping may be performed by exchanging the initial LDIF files using e-mail or similar.

A.7.10.5 LDAP Demonstrator Profile

If OpenLDAP is used, version 2.2.28 (released September 2005) SHALL be used [OpenLDAP].

A.7.10.6 Directory Schema
If OpenLDAP is used, the OpenLDAP core schema SHALL be used.

Remark: Since we permit use of different directory systems, e.g. AD, we may encounter some schema
related issues. However, since we do not have any strict schema requirements, we should be able to solve
these by modifying the schemas “on demand”.

A.7.10.7 PKI Management Support
A PKI will be established for the national systems. The directory service will support the use of PKI(s)
between nations by publishing the information necessary for path validation of certificates and the

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 74 RTO-TR-IST-061

distribution of Certification Authority’s certificate revocation list (CRL). Certificate Authority entry
distinguished names shall align with the name stored in the issuer field of the CA certificate.

Root CA entry – This entry must be based on a structural object class, which can incorporate the pkiCA
auxiliary object class. e.g. organizationalRole. This entry is used to store the CRL and ARL.

Intermediate CA entry - This entry must be based on a structural object class, which can incorporate the
pkiCA auxiliary object class. This entry is used to store the certificate and CRL.

A.7.10.7.1 Systems support

End Entity PKI support – This entry must be based on a structural object class, which can incorporate the
pkiUser auxiliary object class. e.g. organizationalPerson. This entry is used to store the End Entity
certificate.

A.7.10.7.2 PKI Object Classes

pkiCA
The pkiCA object class, defined in ITU-T Rec. X.509 | ISO/IEC 9594-8 DAM 1, SHALL be used in
defining directory entries for Certification Authorities. The table below shows the composition of the
pkiCA object class.

pkiCA Object Class

Attribute

m/o

X.509: authorityRevocationList o
X.509: cACertificate o
X.509: certificateRevocationList o o
X.509: crossCertificatePair -

pkiUser
The pkiUser object class SHALL be used in defining directory entries for objects that include user
certificates, as defined in ITU-T Rec. X.509 | ISO/IEC 9594-8 DAM 1. The table below shows the
composition of the pkiUser object class.

pkiUser Object Class

Attribute m/o
X.509: userCertificate o

A.7.10.8 Available Freeware

• OpenLDAP: http://www.openldap.org/
• Version 2.2.28 Win32 binaries:

http://bergmans.us/list/openldap-windows/2005/09/msg00003.html
• Admin guide for OpenLDAP:

http://www.openldap.org/doc/admin23/
• JXplorer 3.1 LDAP Browser/client:

http://www.jxplorer.org

http://www.openldap.org/
http://bergmans.us/list/openldap-windows/2005/09/msg00003.html
http://www.openldap.org/doc/admin23/

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 75

A.7.11 Demonstrator Security Policy Identifier
The policy identifier of the security labels SHALL be set to “RTO-IST-061-Mission”.

A.7.12 References
[1] [WS-Security 2004-OASIS 200401] Web Services Security: SOAP Message Security 1.0

(WS-Security 2004).

[2] [WS-Addresing-Core] http://www.w3.org/TR/ws-addr-core.

[3] [OpenLDAP] http://www.openldap.org/, Version 2.2.28 Win32 binaries: http://bergmans.us/list/
openldap-windows/2005/09/msg00003.html.

[4] [RFC 2247]: Using Domains in LDAP/X.500 Distinguished Names: ftp://ftp.rfc-editor.org/in-notes/
rfc2247.txt.

[5] [RFC 2849]: The LDAP Data Interchange Format (LDIF) - Technical Specification: ftp://ftp.rfc-
editor.org/in-notes/rfc2849.txt.

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.w3.org/TR/ws-addr-core
http://www.openldap.org/
http://bergmans.us/list/openldap-windows/2005/09/msg00003.html
http://bergmans.us/list/openldap-windows/2005/09/msg00003.html
ftp://ftp.rfc-editor.org/in-notes/rfc2247.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2247.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2849.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2849.txt

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 76 RTO-TR-IST-061

A.8 COMPRESSION TECHNIQUES

This chapter contains the specification of data compression applied to SOAP messages for the
CWID’2006 demonstrator. Please refer to previous versions of this chapter for an introduction and
overview of related issues, existing tools and techniques. Appendix 10 contains performance analysis of a
few most promising compression methods.

A.8.1 Introduction
The research and implementation works, performed by the RTG-027 Working Group, are trying to address
issues related to employing the SOA architecture and related technologies (i.e., SOAP/Web Services) in
limited-bandwidth networks. To address the problem of communication overhead, caused by using XML
for communication, the Group has decided to implement and demonstrate data compression techniques,
together with an analysis of its influence on the overall demonstrator’s performance.

Note that enabling data compression does not necessarily improve the overall communication performance
(that is, the request–response delay). Compression trades smaller message sizes (and thus better
communication performance) for increased processing overhead at clients and servers. Thus, generally,
compression improves performance in bandwidth-limited environments while it may impair performance
in high-speed networks.

A.8.2 Compression of a SOAP Message
For every SOAP message, compression is performed for these elements of the SOAP envelope, which are
selected for encryption. That is, both compression and encryption on the sender side (as well as decryption
and decompression on the receiver side) should be considered as a single, complex step of data processing,
with binary compressed data being an immediate input to encryption (or, with binary decrypted data being
an immediate input to decompression on the receiver side).

The following remarks should be made:

1. Enabling compression is optional; if enabled, it may select one of the compression methods
specified in Section A.8.3.

2. Compression is configured at the demonstrator’s startup, through a configuration file, and does
not change during the demonstration.

3. It is assumed that the compression method is known in advance and no additional headers or
markers, indicating the compression type, are added to the SOAP message being processed5.

4. It is assumed that compression, if enabled, will always be executed even for small messages6.
Speaking in other words, there is no on-the-fly decision whether data should be compressed or
left plain.

A.8.2.1 Motivation

Compression of selected SOAP Envelope elements is similar to encryption, as defined in the specification
[OASIS-WSS]; except that for compression, no additional secret data are involved. In both cases, a SOAP
message’s fragment (and XML element) is replaced with binary data, possibly of a different length (due to
compression or padding for encryption). Then, the binary data must be encoded – usually, using Base64 –
to keep the SOAP envelope valid. This, unfortunately, causes the message size to grow (the encoding
replaces every 3 bytes with 4 new ones) and the gain from compression may be diminished or even lost.

5 This choice has been made for simplicity but of course it remains open to discussion. Additionally, in most cases, it is possible

to dynamically detect the compression method by just looking at a few first bytes of the message.
6 See above. It was verified during compression performance tests that both selected compression methods are able to further

shrink even quite small messages (120 bytes).

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 77

Due to simplicity, we do not define any extension mechanisms. Additionally, performing two separate
steps (e.g., compress, encode, then encrypt, and encode again) does not seem to be the desired way.
Instead, for each selected XML element, the encryption should be performed just after the compression,
i.e., it should take the binary output from the compression step. Such an approach should improve the
encryption (and decryption) performance due to smaller number of bytes to encrypt.

It would also be possible to compress (or, encode) the whole SOAP message after it has been prepared for
supplying to the transport layer but the Group decided not to implement this functionality in the
demonstrator.

A.8.3 Compression Methods
Two data compression algorithms have been selected for the demonstrator:

1. GZip – the standard, general-purpose compression algorithm;

2. XMill – XML-specific data compressor.

It has been verified through extensive tests that both algorithms are able to significantly reduce sizes of
XML documents, even for small ones (120-200 bytes). In terms of data compression and decompression
times, GZip is definitely faster. Please refer to Appendix X for performance data.

A.8.4 Configuration
The following remarks should be made:

1. Compression configuration is read from an appropriate demonstrator’s configuration file.

2. Compression method MAY be selected, and additional options MAY be specified. If the
compression method is not specified, compression is disabled.

3. The compression method is specified using an XmlZipper XML element in the configuration
file.

4. Optional options are specified using a number of additional elements:
XmlZipperOptionCount, which contains the number of options, and
XmlZipperOptionN, with N = 0..<number of options – 1>, containing subsequent options7.
If the XmlZipperOptionCount element is missing, no options are assumed (this is
equivalent to XmlZipperOptionCount = 0).

5. An exemplary configuration file with compression disabled should look like this:
<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <appSettings>
 <add key="XmlZipper" value=""/>
 <add key="XmlZipperOptionCount" value="0"/>
 </appSettings>
</configuration>

6. An exemplary configuration file with GZip-based compression enabled should look like this:
<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <appSettings>
 <add key="XmlZipper" value="gzip"/>
 <add key="XmlZipperOptionCount" value="0"/>
 </appSettings>
</configuration>

7 This looks quite primitive but allows to avoid parsing and splitting options, necessary when a single option string would be

used.

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 78 RTO-TR-IST-061

7. An exemplary configuration file with XMill-based compression enabled should look like this:
<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <appSettings>
 <add key="XmlZipper" value="xmill"/>
 <add key="XmlZipperOptionCount" value="3"/>
 <add key="XmlZipperOption0" value="-P"/> <!— ppmdi compression -->
 <add key="XmlZipperOption1" value="-9"/> <!- 9th compression level -->
 <add key="XmlZipperOption2" value="-on"/> <!- no output formatting -->
 </appSettings>
</configuration>

A.8.5 References
[1] [OASIS-WSS] Web Services Security: SOAP Message Security 1.0, OASIS Standard 200401,

March 2004. Available: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-
security-1.0.pdf.

[2] [SharpZip] http://www.icsharpcode.net/OpenSource/SharpZipLib/.

[3] A popular .NET open-source compression library containing GZip, BZip and Zip compressors.

[4] [XMill] http://sourceforge.net/projects/xmill.

[5] XMill source code. Note that it contains a plethora of memory bugs, so the original source had to be
debugged and corrected.

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.icsharpcode.net/OpenSource/SharpZipLib/
http://sourceforge.net/projects/xmill

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 79

A.9 OTHER ISSUES

A.9.1 Time Zone
To avoid problems with time zones it is RECOMMENDED that UTC (GMT/ZULU) is used.

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 80 RTO-TR-IST-061

Appendix 1: tModels

This specification introduces a number of canonical tModels that are used to represent information about
services, assets, nations and COIs in the service registry. These tModels are defined here.

A1.1 IDENTIFICATION STRING TMODEL

A tModel used to identify businessEntities such as Nations, Assets and COIs. The tModel structure is
shown below.

<tModel tModelKey="uddi:5B595F40-6BB4-11DA-9F40-981D933BF1E5">
 <name>IdentificationString</name>
 <description xml:lang="en">Identification string identifier system</description>
 <overviewDoc>
 <overviewURL>http://link.to.spec</overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:types"
 keyName="uddi-org:types"
 keyValue="unchecked"/>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:types"
 keyName="uddi-org:types"
 keyValue="identifier"/>
 </categoryBag>
</tModel>

The keyValue attribute must be unique within the UDDI registry to ensure that publication can be
performed correctly. To ensure uniqueness, each nation SHALL generate keyValues that start with the two
letter nation code followed by colon. Each nation is responsible for ensuring this uniqueness within their
national domain when publishing businessEntities. Examples of a keyValues:

• No:asset:frigate:nansen

When a reference to this tModel is used, the keyName attribute MUST have the value
“IdentificationString”.

A1.2 SERVICE TAXONOMY TMODEL

A tModel used to classify services. The tModel structure is shown below.

<tModel tModelKey="uddi:102CBCF0-4C6B-11DA-BCF0-9D94332B2CEE">
 <name>ServiceTaxonomy</name>
 <description xml:lang="en">Service category system</description>
 <overviewDoc>
 <overviewURL>http://link.to.spec</overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:types"
 keyName="uddi-org:types"
 keyValue="unchecked"/>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:types"
 keyName="uddi-org:types"
 keyValue="categorization"/>
 </categoryBag>
</tModel>

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 81

While this is an unchecked category system, the allowed values to be used with this category system are:

KeyValue Description
Sensor Classifies the service as a Sensor

When a reference to this tModel is used, the keyName attribute MUST have the value “ServiceType”.

A1.3 COVERAGEAREA TMODEL

This tModel is used to group two references to the Longitude tModel and two references to the Latitude
tModel together to indicate that these tModels constitute the upper left and lower right corner in a
rectangle. Which Longitude tModel that belongs to the upper left or lower right point is indicated by the
value in the keyName attribute in the reference to the corresponding tModel. The same applies for the
Latitude tModel. The tModel structure is shown below.

<tModel tModelKey="uddi:72CDEA00-4C6B-11DA-AA00-CDECD53229D7">
 <name>CoverageArea</name>
 <description xml:lang="en">Coverage area category system</description>
 <overviewDoc>
 <overviewURL>http://link.to.spec</overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:types"
 keyName="uddi-org:types"
 keyValue="unchecked"/>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:types"
 keyName="uddi-org:types"
 keyValue=" categorizationGroup"/>
 </categoryBag>
</tModel>

A1.4 LONGITUDE TMODEL

This tModel is used to indicate a longitude. The tModel structure is shown below.

<tModel tModelKey="uddi:A1DC1E20-4C6B-11DA-9E20-A10FD9209C35">
 <name>Longitude</name>
 <description xml:lang="en">The longitude of a geodetic point (wgs84)</description>
 <overviewDoc>
 <overviewURL>http://link.to.spec</overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:types"
 keyName="uddi-org:types"
 keyValue="unchecked"/>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:types"
 keyName="uddi-org:types"
 keyValue=" categorization"/>
 </categoryBag>
</tModel>

Valid values for this category system are decimal degrees in the range -180 degrees to 180 degrees.

The keyName attribute MUST either have the value “upperLeft” or “lowerRight”, indicating which
corner of the coverage area rectangle this longitude is part of.

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 82 RTO-TR-IST-061

A1.5 LATITUDE TMODEL

This tModel is used to indicate a latitude. The tModel structure is shown below.

<tModel tModelKey="uddi:9C707BC0-4C6B-11DA-BBC0-B4DACA2160E4">
 <name>Latitude</name>
 <description xml:lang="en"> The latitude of a geodetic point (wgs84)</description>
 <overviewDoc>
 <overviewURL>http://link.to.spec</overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:types"
 keyName="uddi-org:types"
 keyValue="unchecked"/>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:types"
 keyName="uddi-org:types"
 keyValue=" categorization"/>
 </categoryBag>
</tModel>

Valid values for this category system are decimal degrees in the range -90 degrees to 90 degrees.

The keyName attribute MUST either have the value “upperLeft” or “lowerRight”, indicating which
corner of the coverage area rectangle this longitude is part of.

A1.6 POSITION TMODEL

A tModel used to specify the position of the platform the service belongs to. The tModel structure is
shown below.

<tModel tModelKey="uddi:7F663FB0-4C6B-11DA-BFB0-9985F7CAF2E1">
 <name>Position</name>
 <description xml:lang="en">Represents the dynamic position of the
service.</description>
 <overviewDoc>
 <overviewURL>http://link.to.spec</overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:types"
 keyName="uddi-org:types"
 keyValue="unchecked"/>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:types"
 keyName="uddi-org:types"
 keyValue="categorization"/>
 </categoryBag>
</tModel>

The valid values for this category system are URL addresses. These addresses points to a location where
the position of the sensor can be generated dynamically on the fly.

When a reference to this tModel is used, the keyName attribute MUST have the value “Position”.

A1.7 PUBLISHED TMODEL

This tModel is used to specify the date and time when the service was published into the service registry.
The tModel structure is shown below.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 83

<tModel tModelKey="uddi:81A1B0C0-4C6B-11DA-B0C0-9311F1331935">
 <name>Published</name>
 <description xml:lang="en">Represents the publishing date to the
service.</description>
 <overviewDoc>
 <overviewURL>http://link.to.spec</overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:types"
 keyName="uddi-org:types"
 keyValue="unchecked"/>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:types"
 keyName="uddi-org:types"
 keyValue="categorization"/>
 </categoryBag>
</tModel>

The valid values for this category system are timestamps on the format:
 YYYY-MM-DDThh:mm:ss±hh:mm
Where YYYY=year, MM=month, DD=day, hh=hour, mm=minute and ss=second.

When a reference to this tModel is used, the keyName attribute MUST have the value “Published”.

A1.8 VALID UNTIL TMODEL

This tModel is used to specify the date and time the information about the service in the service registry
cease to be valid. The tModel structure is shown below.

<tModel tModelKey="uddi:8DA2CF80-4C6B-11DA-8F80-AB91377B4FFC">
 <name>ValidUntil</name>
 <description xml:lang="en">Represents the end of the validity period for the
service.</description>
 <overviewDoc>
 <overviewURL>http://link.to.spec</overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:types"
 keyName="uddi-org:types"
 keyValue="unchecked"/>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:types"
 keyName="uddi-org:types"
 keyValue="categorization"/>
 </categoryBag>
</tModel>

The valid values for this category system are timestamps on the format:
 YYYY-MM-DDThh:mm:ss±hh:mm
Where YYYY=year, MM=month, DD=day, hh=hour, mm=minute and ss=second.

When a reference to this tModel is used, the keyName attribute MUST have the value “ValidUntil”.

A1.9 ENTITY TYPE TMODEL

This tModel is used to indicate whether a businessEnity represents a Nation, an Asset or a COI. The
structure of the tModel is shown below.

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 84 RTO-TR-IST-061

<tModel tModelKey="uddi:92123790-4C6B-11DA-B790-A4F45DE39EFE">
 <name>EntityType</name>
 <description xml:lang="en">Entity Type category system.</description>
 <overviewDoc>
 <overviewURL>http://link.to.spec</overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:types"
 keyName="uddi-org:types"
 keyValue="unchecked"/>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:types"
 keyName="uddi-org:types"
 keyValue="categorization"/>
 </categoryBag>
</tModel>

While this is an unchecked category system, there are only three values that should be used with this
category system:

KeyValue Description
Nation Indicates that the businessEntity referencing this tModel is a

nation.
Asset Indicates that the businessEntity referencing this tModel is

an asset.
COI Indicates that the businessEntity referencing this tModel is a

COI.

In all of the above cases, the keyName attribute MUST have the value “EntityType”.

A1.10 ASSET CATEGORIZATION TMODEL
This tModel is used in the categoryBag of a businessEnity that represents an Asset to indicate what kind of
asset this is. The structure of the tModel is shown below.

<tModel tModelKey="uddi:962D8C30-4C6B-11DA-8C30-E0B6053F4D2C">
 <name>AssetCategorization</name>
 <description xml:lang="en">Asset category system.</description>
 <overviewDoc>
 <overviewURL>http://link.to.spec</overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:types"
 keyName="uddi-org:types"
 keyValue="unchecked"/>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:types"
 keyName="uddi-org:types"
 keyValue="categorization"/>
 </categoryBag>
</tModel>

When a reference to this tModel is used, the keyName attribute MUST have the value
“AssetCategorization”.

A1.11 TOPICCATEGORIZATION
A tModel used to classify tModels as a topic space, a root topic or a sub topic. The tModel structure is
shown below.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 85

<tModel tModelKey="uddi:A41915D0-4C6B-11DA-95D0-BD45C7FAF23E">
 <name>TopicCategorization</name>
 <description xml:lang="en">Topic category system</description>
 <overviewDoc>
 <overviewURL>http://link.to.spec</overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:types"
 keyName="uddi-org:types"
 keyValue="unchecked"/>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:types"
 keyName="uddi-org:types"
 keyValue="categorization"/>
 </categoryBag>
</tModel>

While this is an unchecked category system, there are only three values that should be used with this
category system:

KeyValue Description
TopicSpace Indicates that the tModel represents a topic space.
RootTopic Indicates that the tModel represents a root topic.
SubTopic Indicates that the tModel represents a sub topic.

 In all of the above cases, the keyName attribute MUST have the value “TopicCategorization”.

A1.12 TOPICSPACEREFERENCE

UDDI does not provide a built-in mechanism to describe a relationship between two tModels. The
topicSpaceReference tModel provides a mechanism to indicate that a topic-tModel has a relationship
(belonging to) to a certain topicSpace tModel. The structure of the tModel is shown below.

<tModel tModelKey="uddi:A63DCA90-4C6B-11DA-8A90-FEE8FA5DB743">
 <name>TopicSpaceReference</name>
 <description xml:lang="en">A category system used to reference a topicSpace tModel.
 </description>
 <overviewDoc>
 <overviewURL>http://link.to.spec</overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:types"
 keyName="uddi-org:types"
 keyValue="unchecked"/>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:types"
 keyName="uddi-org:types"
 keyValue="categorization"/>
 </categoryBag>
</tModel>

Valid values for this category system are tModelKeys. The content of the keyValue attribute in a
keyedReference that refers to this tModel is the tModelKey of the topicSpace tModel being referenced.

When a reference to this tModel is used, the keyName attribute MUST have the value
“TopicSpaceReference”.

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 86 RTO-TR-IST-061

A1.13 DISTINGUISHED NAME

This tModel is used to specify the distinguished name associated with a security certificate. The
distinguished name can be used to retrieve the certificate from LDAP. This tModel is used in the
categoryBag of bindingTemplates.

<tModel tModelKey="uddi:767CC130-4C6B-11DA-8130-C5E1F03D1906">
 <name>DistinguishedName</name>
 <description xml:lang="en">Distinguished Name Category system</description>
 <overviewDoc>
 <overviewURL>http://link.to.spec</overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:types"
 keyName="uddi-org:types"
 keyValue="unchecked"/>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:types"
 keyName="uddi-org:types"
 keyValue="categorization"/>
 </categoryBag>
</tModel>

When a reference to this tModel is used, the keyName attribute MUST have the value
“DistinguishedName”.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 87

Appendix 2: Features in UDDI V3

There are many similarities between UDDI V2 and UDDI V3, but there is some extra features available in
UDDI V3, which would make the implementation of the service registry easier. These features include:

• Support for digital signatures
• A subscription API
• Support for multi-registry environment
• Better search API (can do single-step instead of multi-step queries as one have to in version 2)
• Possible to categorize bindingTemplate-entities

The support for digital signatures assures the integrity and authenticity of the data stored in the UDDI
registry, both for the publisher and the inquirer of the data.

The subscription API makes it possible to track registry activity by subscribing to the entities of interest,
and each time something changes about that entity one will get notified. For instance in the case a service
goes down, and based on the service termination policies used, its entry in the UDDI registry may get
deleted which will trigger a notification to those who has subscribed to that entity. This can again trigger a
search for a replacement service.

The support for a multi-registry environment makes it possible to have a more broadly distributed
environment. In addition to having a UDDI registry consisting of several nodes, which replicates data
among themselves (UDDI V2 and V3), UDDI version 3 also allows data sharing among different
registries.

The search API in UDDI version 3 has been improved, so that queries that previously required two or
more sub-queries to be satisfied, now can be satisfied using a single query with nested sub-queries,
reducing the number of round trips a client must make to a UDDI registry.

The possibility to categorize bindingTemplates allows metadata to be attributed directly to the technical
details of a web service. This facilitates more specific searches on web services.

UDDI version 2 and 3 have different key rules. The table below gives an overview.

 UDDI version 2 UDDI version 3
businessKey
serviceKey
bindingKey

<uuid-key>

tModelKey uuid:<uuid-key>

domain-key
OR

uddi:<uuid-key>

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 88 RTO-TR-IST-061

Appendix 3: PKI Profiles

A3.1 SIGNATURE CERTIFICATES

A3.1.1 Signature Certificate Introduction
This appendix provides the Profile for the Signature Certificates (self-signed CA, CA, and end entities) for
use in this environment. The structure for the Certificate is defined in the 1997 version of ITU-T X.509 |
ISO/IEC 9594-8.

A3.1.2 Description of Tables
• The “Item” and “Notes” columns are provided for cross-referencing. The numbers in the “Item”

column are the row numbers. The numbers in the “Notes” column indicate the table numbers
followed by the “item” number enclosed in parentheses. These two columns are used together to
point to sub-elements. The “Notes” column also refers to additional information supplied in the
last row of the table.

• The “Protocol Elements” column refers to the name of ASN.1 fields taken from the X.500
recommendations.

• In each table, the “Base” column reflects the level of support required for conformance to the base

standard8. The level of support refers to the support classification for the “Base” column. The
“Base” column is broken into “Proc.” (i.e., processing) and “Gen.” (i.e., generation) columns. The
“Proc.” column reflects the level of support required by compliant certificate processing and using
entities who process certificates. The “Gen.” column reflects the level of support required in
compliant signature certificates (i.e., the information that is included in the certificate). The types
of signature certificates include: (i.e., self-signed CA (see A.2), CA (see A.3), and end-entities
(see A.5). When the CA acts as an End Entity (e.g., when a CA verifies the signature on a
message), then the “Proc.” column applies.9

The “Support” column is provided for completion by the supplier of the implementation as follows:

Y the protocol element is fully supported (i.e., supporting the requirements of the m support
classification)

N the protocol element is not fully supported, further qualified to indicate the action taken
on receipt of such an element as follows:
ND - the element is discarded/ignored
NR - the PDU is rejected

– or blank the protocol element is not applicable

A3.1.3 Support Classifications
• Each of the protocol elements listed in section A.210, A.3, A.4, and A.5 are designated as having a

support requirement of mandatory or optional. Where protocol elements are nested (i.e., the

8 If the CCEB defined a certificate extension, field, or attribute not in the base standard (i.e., X.509), the classification for the
“Base” column is −.

9 “Proc.” columns in the PAA, PCA, CA, External Domain, and EE certificate tables are identical.
10 (U) Implementation of clause A.2 is dependent on National policy. Formatting the trusted public key as a self-signed

certificate is dependent on National policy (see clause 2.4 of the CMI Authentication Framework).

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 89

elements contain sub-elements), the requirement to support the nested element is relevant only
when the immediately containing (parent) element is supported.

• To specify the support level of the protocol elements, the following terminology is defined.

A3.1.4 Static Capability
The following classifications are used to specify static conformance (i.e., capability).

• mandatory support (m): Implementations claiming to create certificates shall be able to generate
the protocol element. Implementations claiming to process certificates shall be able to receive the
protocol elements and perform all associated procedures (i.e., implying the ability to handle both
the syntax and the semantics of the element) as relevant.

• optional (o): Implementations claiming to create certificates are not required to support
generation of the protocol element. If support is claimed, the element shall be treated as if it were
specified as mandatory support, and the sub-elements, if present, shall be supported as specified.
Implementations claiming to perform processing of certificates shall ignore the protocol element
and continue processing of the certificate.

• conditional (c): Implementations shall support the protocol element under the conditions
specified. If the conditions are met, the protocol element shall be treated as if it were specified as
mandatory support. If these conditions are not met, the protocol element shall be treated as if it
were specified as optional support (unless otherwise stated).

• not applicable (–) : This element is not applicable in the particular context in which this
classification is used.

A3.1.5 Dynamic Capability
The following classifications are used to specify dynamic conformance (i.e., behaviour).

• required (r): The information for this protocol element must be populated upon certificate
generation.

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 90 RTO-TR-IST-061

Table A3.1: Self-Signed CA Signature Certificate

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.

1 signed m m m mr

2 toBeSigned m m m mr

3 version m m m mr

4 serialNumber m m m mr

5 signature m m m mr See Table A3.2 Note 2

6 issuer m m m mr See ACP 133

7 validity m m m mr

8 notBefore m m m mr See Table A3.46 (1)

9 notAfter m m m mr See Table A3.46 (1)

10 subject m m m mr See ACP 133

11 subjectPublicKeyInfo m m m mr

12 algorithm m m m mr See Table A3.2

13 subjectPublicKey m m m mr

14 issuerUniqueIdentifier o o - -

15 subjectUniqueIdentifier o o - -

16 extensions o o m mr See Table A3.3

17 algorithmIdentifier m m m mr See Note 2

18 encrypted m m m mr

Table A3.2: Algorithm Identifier

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.

1 algorithm m m m mr

2 parameters m m m mr Note 3

Table A3.3: Extensions

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.

1 extnID m m m mr Note 4

2 critical m m m mr d(false)

3 extnValue m m m mr

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 91

Table A3.4: Standard Extensions

Item Protocol Element Base Profile Notes

 Proc. Gen
.

Proc. Gen.

1 authorityKeyIdentifier o o m - See Table A3.5

2 subjectKeyIdentifier o o m mr

3 keyUsage o o m - See Table A3.36

4 extKeyUsage o o - -

5 privateKeyUsagePeriod o o - - See Table A3.7

6 certificatePolicies o o - - See Table A3.8

7 policyMappings o o - - See Table A3.9

8 subjectAltName o o - - See Table A3.46 (1),
Note 5

9 issuerAltName o o - - See Table A3.46 (1),
Note 5

10 subjectDirectoryAttributes o o - -

11 basicConstraints o o m mr See Table A3.10
Note 6

12 nameConstraints o o - - See Table A3.11

13 policyConstraints o o - - See Table A3.13

14 cRLDistributionPoints o o - - See Table A3.14
Note 5

15 authorityInfoAcess o o - - See Table A3.15

16 inhibitAnyPolicy o o - -

17 subjectInfoAccess o o - -

18 freshestCRL o o - -

Table A3.5: Authority Key Identifier

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.

1 keyIdentifier c3 c3 m mr Note 7

2 certIssuer c4 c4 - -

3 certSerialNumber c4 c4 - -

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 92 RTO-TR-IST-061

Table A3.6: Key Usage

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.

1 digitalSignature o o o o Note 8

2 nonRepudiation o o o o Note 8

3 keyEncipherment o o – –

4 dataEncipherment o o – –

5 keyAgreement o o – –

6 keyCertSign o o m mr

7 cRLSign o o m m Note 8

8 encipherOnly o o – –

9 decipherOnly o o – –

Table A3.7: Private Key Usage Period

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 notBefore m c5 - -

2 notAfter m c5 - -

Table A3.8: Certificate Policies

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 policyIdentifier m m - -

2 policyQualifiers o o - -

3 policyQualifierId m m - -

4 qualifier o o - -

Table A3.9: Policy Mappings

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 issuerDomainPolicy m m - -

2 subjectDomainPolicy m m - -

Table A3.10: Basic Constraints

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 cA m m m mr d(false)

2 pathLenConstraint m o m -

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 93

Table A3.11: Name Constraints

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 permittedSubtrees m o - - See Table A3.12

2 excludedSubtrees m o - - See Table A3.12

Table A3.12: General Subtrees

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 base m m - - See Table A3.46 (5)

2 minimum m m - - d(0)

3 maximum m o - -

Table A3.13: Policy Constraints

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 requireExplicitPolicy m o - -

2 inhibitPolicyMapping m o - -

Table A3.14: CRL Distribution Points

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 distributionPoint o o - - See Table A3.46 (17)

2 reasons o o - - See Table A3.46 (20)

3 cRLIssuer o o - - See Table A3.46 (4)

Table A3.15: Authority Information Access

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 accessMethod o o - - Note 9

2 accessLocation o o - - Note 9

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 94 RTO-TR-IST-061

Table A3.16: CA Signature Certificate

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 signed m m m mr

2 toBeSigned m m m mr

3 version m m m mr

4 serialNumber m m m mr

5 signature m m m mr See Table A3.17,
Note 10

6 issuer m m m mr See ACP 133

7 validity m m m mr

8 notBefore m m m mr See Table A3.46 (1)

9 notAfter m m m mr See Table A3.46 (1)

10 subject m m m mr See ACP 133

11 subjectPublicKeyInfo m m m mr

12 algorithm m m m mr See Table A3.17

13 subjectPublicKey m m m mr

14 issuerUniqueIdentifier o o - -

15 subjectUniqueIdentifier o o - -

16 extensions o o m mr See Table A3.18

17 algorithmIdentifier m m m mr See Table A3.17,
Note 10

18 encrypted m m m mr

Table A3.17: Algorithm Identifier

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 algorithm m m m mr

2 parameters m m m m Note 11

Table A3.18: Extensions

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 extnID m m M mr Note 12

2 critical m m M mr d(false)

3 extnValue m m M mr

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 95

Table A3.19: Standard Extensions

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 authorityKeyIdentifier o o M mr See Table A3.20

2 subjectKeyIdentifier o o M mr

3 keyUsage o o M mr See Table A3.21,
Note 13

4 extKeyUsage o o - -

5 privateKeyUsagePeriod o o - - See Table A3.22

6 certificatePolicies o o - - See Table A3.23

7 policyMappings o o - - See Table A3.24

8 subjectAltName o o - - See Table A3.46 (1),
Note 14

9 issuerAltName o o - - See Table A3.46 (1),
Note 22

10 subjectDirectoryAttributes o o - - See Table A3.25

11 basicConstraints o o M mr See Table A3.25,
Note 13

12 nameConstraints o o - - See Table A3.26

13 policyConstraints o o - - See Table A3.28

14 cRLDistributionPoints o o - - See Table A3.29
Note 14

15 authorityInfoAcess o o - - See Table A3.30

16 inhibitAnyPolicy o o - -

17 subjectInfoAccess o o - -

18 freshestCRL o o - - See Table A3.29

Table A3.20: Authority Key Identifier

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 keyIdentifier c9 c9 M mr Note 15

2 certIssuer c10 c10 - -

3 certSerialNumber c10 c10 - -

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 96 RTO-TR-IST-061

Table A3.21: Key Usage

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 digitalSignature o o M m Note 16

2 nonRepudiation o o M m Note 16

3 keyEncipherment o o – –

4 dataEncipherment o o – –

5 keyAgreement o o – –

6 keyCertSign o o M mr

7 cRLSign o o M m Note 16

8 encipherOnly o o – –

9 decipherOnly o o – –

Table A3.22: Private Key Usage Period

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 notBefore m c11 - -

2 notAfter m c11 - -

Table A3.23: Certificate Policies

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 policyIdentifier m m - -

2 policyQualifiers o o - -

3 policyQualifierId m m - -

4 qualifier o o - -

Table A3.24: Policy Mappings

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 issuerDomainPolicy m m - -

2 subjectDomainPolicy m m - -

Table A3.25: Basic Constraints

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 cA m m m mr d(false)

2 pathLenConstraint m o m -

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 97

Table A3.26: Name Constraints

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 permittedSubtrees m o - - See Table A3.27

2 excludedSubtrees m o - - See Table A3.27

Table A3.27: General Subtrees

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 base m m - - See Table A3.46 (5)

2 minimum m m - - d(0)

3 maximum m o - -

Table A3.28: Policy Constraints

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 requireExplicitPolicy m o - -

2 inhibitPolicyMapping m o - -

Table A3.29: CRL Distribution Points

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 distributionPoint o o - - See Table A3.46 (17)

2 reasons o o - - See Table A3.46 (20)

3 cRLIssuer o o - - See Table A3.46 (4)

Table A3.30: Authority Information Access

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 accessMethod o o - - Note 17

2 accessLocation o o - - Note 17

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 98 RTO-TR-IST-061

Table A3.31: End Entity Signature Certificate

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 signed m m mr mr

2 toBeSigned m m mr mr

3 version m m mr mr

4 serialNumber m m mr mr

5 signature m m mr mr See Table A3.32,
Note 18

6 issuer m m mr mr See ACP 133

7 validity m m mr mr

8 notBefore m m mr mr See Table A3.46 (1)

9 notAfter m m mr mr See Table A3.46 (1)

10 subject m m mr mr See ACP 133

11 subjectPublicKeyInfo m m mr mr

12 algorithm m m mr mr See Table A3.32

13 subjectPublicKey m m mr mr

14 issuerUniqueIdentifier o o - -

15 subjectUniqueIdentifier o o - -

16 extensions o o mr mr See Table A3.33

17 algorithmIdentifier m m mr mr See Table A3.32,
Note 18

18 encrypted m m mr mr

Table A3.32: Algorithm Identifier

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 algorithm m m m mr

2 parameters m m m m Note 19

Table A3.33: Extensions

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 extnID m m M m Note 20

2 critical m m M m d(false)

3 extnValue m m M m

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 99

Table A3.34: Standard Extensions

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 authorityKeyIdentifier o o M mr See Table A3.35

2 subjectKeyIdentifier o o M mr

3 keyUsage o o M mr See Table A3.36, Note
21

4 extKeyUsage o o - -

5 privateKeyUsagePeriod o o - - See Table A3.37

6 certificatePolicies o o - - See Table A3.38

7 policyMappings o o - − See Table A3.39

8 subjectAltName o o - - See Table A3.46 (1),
Note 22

9 issuerAltName o o - - See Table A3.46 (1),
Note 2

10 subjectDirectoryAttributes o o - -

11 basicConstraints o o M - See Table A3.40

12 nameConstraints o o - − See Table A3.41

13 policyConstraints o o - − See Table A3.43

14 cRLDistributionPoints o o - - See Table A3.44, Note
21

15 authorityInfoAcess o o - - See Table A3.45

16 inhibitAnyPolicy o o - −

17 subjectInfoAccess o o - -

18 freshestCRL o o - - See Table A3.44

Table A3.35: Authority Key Identifier

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 keyIdentifier c14 c14 Mr mr Note 23

2 certIssuer c15 c15 - -

3 certSerialNumber c15 c15 - -

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 100 RTO-TR-IST-061

Table A3.36: Key Usage

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 digitalSignature o o M m Note 24

2 nonRepudiation o o M m Note 24

3 keyEncipherment o o M m

4 dataEncipherment o o M m

5 keyAgreement o o – –

6 keyCertSign o o - –

7 cRLSign o o - - Note 24

8 encipherOnly o o – –

9 decipherOnly o o – –

Table A3.37: Private Key Usage Period

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 notBefore m c16 - -

2 notAfter m c16 - -

Table A3.38: Certificate Policies

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 policyIdentifier m m - -

2 policyQualifiers o o - -

3 policyQualifierId m m - -

4 qualifier o o - -

Table A3.39: Policy Mappings

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 issuerDomainPolicy m m - −

2 subjectDomainPolicy m m - −

Table A3.40: Basic Constraints

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 cA m m M mr d(false)

2 pathLenConstraint m o M -

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 101

Table A3.41: Name Constraints

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 permittedSubtrees m o - − See Table A3.42

2 excludedSubtrees m o - − See Table A3.42

Table A3.42: General Subtrees

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 base m m - − See Table A3.46 (5)

2 minimum m m - − d(0)

3 maximum m o - −

Table A3.43: Policy Constraints

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 requireExplicitPolicy m o - −

2 inhibitPolicyMapping m o - −

Table A3.44: CRL Distribution Points

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 distributionPoint o o - m See Table A3.55 (17)

2 reasons o o - - See Table A3.55 (20)

3 cRLIssuer o o - - See Table A3.55 (4)

Table A3.45: Authority Information Access

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 accessMethod o o - - Note 25

2 accessLocation o o - - Note 25

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 102 RTO-TR-IST-061

Table A3.46: Common Fields

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 Time

2 UTCTime m m m c17

3 GeneralizedTime o o m c18

4 GeneralNames

5 GeneralName m m m m

6 otherName o o - -

7 rfc822Name o o m c19 Note 26

8 dNSName o o - - Note 26

9 x400Address o o - -

10 directoryName o o m m

11 ediPartyName o o - -

12 nameAssigner o o - -

13 partyName o o - m

14 uniformResourceIdentifier o o m m Note 26

15 iPAddress o o - - Note 26

16 registeredID o o - -

17 DistributionPointName

18 fullName m m m m See (4)

19 nameRelativeToCRLIssuer m m m m

20 ReasonFlags

21 unused o o - -

22 keyCompromise o o m m

23 cACompromise o o m m

24 affiliationChange o o m -

25 superseded o o m -

26 cessationOfOperation o o m -

27 certificateHold o o m -

A3.2 CERTIFICATE REVOCATION LISTS

A3.2.1 CRL Introduction
• This appendix provides the Profile for the CRL for use in this environment. The structure for the

CRL is defined in the 1997 version of ITU-T X.509 | ISO/IEC 9594-8.

A3.2.2 Description of Tables
• The “Item” and “Notes” columns are provided for cross-referencing. The numbers in the “Item”

column are the row numbers. The numbers in the “Notes” column indicate the table numbers

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 103

 followed by the “item” number enclosed in parentheses. These two columns are used together to
point to sub-elements. The “Notes” column also refers to additional information supplied in the
last row of the table.

• The “Protocol Elements” column refers to the name of ASN.1 fields taken from the X.500

recommendations.

• In each table, the “Base” column reflects the level of support required for conformance to the base

standard. The level of support refers to the support classification for the “Base” column. The
“Base” column is broken into “Proc.” (i.e., processing) and “Gen.” (i.e., generation) columns. The
“Proc.” column reflects the level of support required by compliant certificate processing and using
entities who process CRLs. The “Gen.” column reflects the level of support required in compliant
CRLs (i.e., the information that is included in the CRL). When the CA acts as an End Entity (e.g.,
when a CA receives a message), then the “Proc.” column applies.

• The “Support” column is provided for completion by the supplier of the implementation as

follows:

 Y the protocol element is fully supported (i.e., supporting the requirements of the m
support classification)

 N the protocol element is not fully supported, further qualified to indicate the action
taken on receipt of such an element as follows:

ND - the element is discarded/ignored

NR - the PDU is rejected

 – or blank the protocol element is not applicable

A3.2.3 Support Classifications
• Each of the protocol elements listed in Section A1.2, A1.3, A1.4 and A1.5 are designated as

having a support requirement of mandatory or optional. Where protocol elements are nested
(i.e., the elements contain sub-elements), the requirement to support the nested element is
relevant only when the immediately containing (parent) element is supported.

• To specify the support level of the protocol elements, the following terminology is defined.

A3.2.4 Static Capability
- The following classifications are used to specify static conformance (i.e., capability).

• mandatory support (m) : Implementations claiming to create certificates shall be able to generate

the protocol element. Implementations claiming to process certificates shall be able to receive the
protocol elements and perform all associated procedures (i.e., implying the ability to handle both
the syntax and the semantics of the element) as relevant.

• optional (o) : Implementations claiming to create certificates are not required to support

generation of the protocol element. If support is claimed, the element shall be treated as if it were
specified as mandatory support, and the sub-elements, if present, shall be supported as specified.
Implementations claiming to perform processing of certificates shall ignore the protocol element
and continue processing of the certificate.

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 104 RTO-TR-IST-061

• conditional (c) : Implementations shall support the protocol element under the conditions
specified. If the conditions are met, the protocol element shall be treated as if it were specified as
mandatory support. If these conditions are not met, the protocol element shall be treated as if it
were specified as optional support (unless otherwise stated).

• not applicable (–) : This element is not applicable in the particular context in which this

classification is used.

A3.2.5 Dynamic Capability
The following classifications are used to specify dynamic conformance (i.e., behaviour).

• required (r) : The information for this protocol element must be populated upon certificate
generation.

Table A3.47: CRL

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 signed m m m mr

2 toBeSigned m m m mr

3 version o o m mr

4 signature m m m mr See Table A3.48,
Note 2

5 issuer m m m mr See ACP 133

6 thisUpdate m m m mr See Table A3.55 (1)

7 nextUpdate o o m mr See Table A3.55 (1)

8 revokedCertificates o o m m

9 userCertificates m m m mr

10 revocationDate m m m mr See Table A3.55 (1)

11 crlEntryExtensions o o - - See Table A3.53

12 crlExtensions o o m mr See Table A3.49

13 algorithmIdentifier m m m mr See Table A3.48,
Note 2

14 encrypted m m m mr

Table A3.48: Algorithm Identifier

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 algorithm m m m mr

2 parameters m m m m

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 105

Table A3.49: Extensions

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 extnID m m m mr Note 3

2 critical m m m mr d(false)

3 extnValue m m m mr

Table A3.50: CRL Extensions

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 authorityKeyIdentifier o o m mr See Table A3.51

2 issuerAltName o o - - See Table A3.55 (4)

3 cRLNumber o o - -

4 issuingDistributionPoint o o - - See Table A3.52,
Note 4

5 deltaCRLIndicator o o - -

Table A3.51: Authority Key Identifier

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 keyIdentifier c3 c4 m mr

2 certIssuer c4 c4 - -

3 certSerialNumber c4 c4 - -

Table A3.52: Issuing Distribution Point

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 distributionPoint o o - - See Table A3.55 (17)

2 onlyContainsUserCerts o o - - d(false)

3 onlyContainsCACerts o o - - d(false)

4 onlySomeReasons o o - - See Table A3.55 (20)

5 indirectCRL o o - - d(false)

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 106 RTO-TR-IST-061

Table A3.53: CRL Entry Extensions

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 reasonCode o o - - See Table A3.54

2 instructionCode o o - -

3 invalidityDate o o - -

4 certificateIssuer o o - - See Table A3.55 (4),
Note 5

Table A3.54: Reason Code

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 unspecified o o - -

2 keyCompromise o o - -

3 cACompromise o o - -

4 affiliationChanged o o - -

5 superseded o o - -

6 cessationOfOperation o o - -

7 certificateHold o o - -

8 removeFromCRL o o - -

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 107

Table A3.55: Common Fields

Item Protocol Element Base Profile Notes

 Proc. Gen. Proc. Gen.
1 Time

2 UTCTime m m M c5

3 GeneralizedTime o o M c6

4 GeneralNames

5 GeneralName m m M m

6 otherName o o - -

7 rfc822Name o o M c7 Note 6

8 dNSName o o - - Note 6

9 x400Address o o - -

10 directoryName o o M m

11 ediPartyName o o - -

12 nameAssigner o o - -

13 partyName o o - m

14 uniformResourceIdentifier o o M m Note 6

15 iPAddress o o - - Note 6

16 registeredID o o - -

17 DistributionPointName

18 fullName m m M m See (4)

19 nameRelativeToCRLIssuer m m M m

20 ReasonFlags

21 unused o o - -

22 keyCompromise o o M m

23 caCompromise o o M m

24 affiliationChange o o M -

25 superseded o o M -

26 cessationOfOperation o o M -

27 certificateHold o o M -

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 108 RTO-TR-IST-061

Appendix 4: XML Security Label Syntax

This Annex is a draft specification from the NATO C3 Agency (NC3A) called “Alternative XML-Security
Label Syntax and Processing (Draft Version 2005) ”. This is not an official document from the NC3A and
has not been provided for the purpose of this demonstrator. It has been used by the RTO/IST 061 because
parts of the specification fits our needs for XML Security Labeling.

A4.1 INTRODUCTION
This document specifies the XML syntax and processing rules for creating and representing digital
information security labels. More specifically, this specification defines an XML security label element
type. Conformance requirements are specified by way of schema definitions and prose respectively. XML
security labels represent the security classification or “sensitivity” of digital data. An XML security label
can be applied to any digital data (data object), including XML. Similar to XML Signatures [XML-Sig],
enveloped or enveloping security labels apply to data within the same XML document as the XML
security label; detached security labels may apply to XML data without modifying the structure of the data
and to data which is external to the XML document containing the XML security label.
This document is based on the XML-Security Label Syntax and Processing by Andreas Thummel, NC3A
and incorporates some lessons learned from a prototype implementation of that specification. The main
lesson learned is that it could be beneficial to decouple the XML security label and the XML signature.
Detached labels are still enabled by referencing both the security label and the labeled object with
references inside an XML digital signature. This decoupling has the benefit of enabling standard XML
digital signature validation to include the validation of the XML security labels. The main disadvantage of
this construct is that it obscures the link between label and labeled object by hiding it in the references of a
digital signature and that it in some complex scenarios of multiple labels applied to multiple objects
requires multiple digital signatures.

A4.1.1 Versions, Namespaces and Identifiers
No provision is made for an explicit version number in this syntax. If a future version is needed, a
different namespace will be generated. The XML namespace [XML-ns] URI that MUST be used by
implementations of this specification is:

 xmlns:slab="http://nc3a.nato.int/2004/06/xmlslab#"
This namespace is also used as the prefix for algorithm identifiers used by this specification. While
applications MUST support XML and XML namespaces, the use of internal entities [XML] or the "slab"
XML namespace prefix and defaulting/scoping conventions are OPTIONAL; these facilities are used to
provide compact and readable examples.

This document uses the namespace prefix “dsig” to refer to the XML Signatures namespace:
 xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"

A4.2 SECURITY LABEL OVERVIEW AND EXAMPLES
This section provides an overview and examples of how XML security labels are applied within this
specification.
In this section, an informal representation and examples are used to describe the structure of the XML
security label syntax. This representation and examples may omit attributes, details and potential features
that are fully explained later.
XML security labels are represented by the SecurityLabel element which has the following structure
(where "?" denotes zero or one occurrence; "+" denotes one or more occurrences; "*" denotes zero or
more occurrences; and “|” denotes choice):

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 109

 <SecurityLabel>
 (<LabeledObjectGroup ID?>
 <ConfidentialityLabel>
 <SecurityPolicyIdentifier/>
 <SecurityClassification/>
 (<Privacymark/>)?
 (<SecurityCategory/>)*
 </ConfidentialityLabel>
 (<Object/>)*
 </LabeledObjectGroup>)+
 </SecurityLabel>

XML security labels can be applied to digital content (data objects) in any data format. If a data object is
XML the security label can be applied to a fraction (more specifically a subset of the XPath [XPath] node
set) of the data object. Otherwise, the security label is applied to the entire data object which is then
treated as a single binary/octet data stream. Since a Securitylabel element (and its Id attribute
values/names) may co-exist or be combined with other elements (and their IDs) within a single XML
document, care should be taken in choosing names such that there are no subsequent collisions that violate
the ID uniqueness validity constraint [XML]. XML security labels SHOULD be applied to data objects as
a parent or as a child of the data object it applies to. A label applies to all data objects that are children of
the label. If the label has no children, it applies to its parent object (but not to the parent’s children). A
label that applies to its children is termed an enveloping label. A label that applies to its parent is termed
an enveloped label. Labels MAY also be applied to objects through references in digital signatures. This is
termed detached labels and is particularly useful when labeling data that is not represented in XML or
when labeling XML data without changing the structure of the data.
To protect the integrity of security labels and the labeled data objects, applications are strongly
encouraged to apply an XML digital signature that covers both the labels and the data objects. For an
XML digital signature to cover both the labels and the associated data objects, the computation of the
signed digest value must include the digests of both the labels and the data objects. If the security label is
used as basis for security policy enforcing such as in an access control mechanism, the label and the data
object it applies to MUST be signed with a digital signature. The security policy enforcing application
MUST validate the digital signature before making policy decisions based on the label.
Digital signatures may be applied to labels and the labeled objects as enveloping, enveloped or detached
signatures. Detached signatures MAY be used to apply labels to data objects by including a reference to
that object and to the label in the references of the digital signature. Processing applications MUST
include logic to process such linking of labels and objects through digital signature references. This
construct of linking labels and objects through digital signature references is designed to allow verification
of digital signatures on labels to follow the standard XML Digital Signature specification. The construct
also allows the usage of XPath transformations to referenced objects to select parts of the reference to
apply the label to.
This specification allows any object to be labeled with any label and does not include mechanisms to
prevent labeling conflicts that might arise from poor labeling of objects. Applications are encouraged to
avoid labeling conflicts and security enforcing applications that relies on the labels of objects MUST
resolve labeling conflicts before making policy decisions. Label conflict resolution strategies may be
different depending on the security policy of the application. Possible conflict resolution strategies are
aborting with an error or applying the highest classification of the conflicting labels.

A4.2.1 Detached Example
The following example is a detached security label of the content of the NC3A Internet home page.

 [r01] <SecurityLabel xmlns:dsig=http://www.w3.org/2000/09/xmldsig#>
 [r02] <LabeledObjectGroup Id="myLabeledObject">
 [r03] <ConfidentialityLabel>
 [r04] <SecurityPolicyIdentifier>

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 110 RTO-TR-IST-061

 [r05] NATO
 [r06] </SecurityPolicyIdentifier>
 [r07] <SecurityClassification>
 [r08] UNCLASSIFIED
 [r09] </SecurityClassification>
 [r10] <SecurityCategory type="Permissive">
 [r11] RELEASABLE FOR INTERNET TRANSMISSION
 [r12] </SecurityCategory>
 [r13] </ConfidentialityLabel>
 [r14] </LabeledObjectGroup>
 [r15] </SecurityLabel>

 [r16] <dsig:Signature>
 [r17] <dsig:SignedInfo>
 [r18] <dsig:Reference URI="#myLabeledObject">
 [r19] <Transforms>
[r20] <Transform Algorithm=
[r21] "http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

 [r22] </Transforms>
 [r23] <DigestMethod
 [r24] Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 [r25] <DigestValue>
 [r26] 3d726c554c90427dd535a0aa2dead8c7e77f8c2a
 [r27] </DigestValue>
 [r28] </dsig:Reference>
 [r29] <dsig:Reference URI="http://www.nc3a.nato.int/index.html">
 [r30] <DigestMethod
 [r31] Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 [r32] <DigestValue>
 [r33] 3d726c554c90427dd535a0aa2dead8c7e77f8c2a
 [r34] </DigestValue>
 [r35] </dsig:Reference>
 [r36] </dsig:SignedInfo>
 [r37] <dsig:SignatureValue>DUEm0...</dsig:SignatureValue>
 [r38] </dsig:Signature>

[r02-15] The required LabeledObjectGroup element defines a ConfidentialityLabel element.
The LabeledObjectGroup element is the data that is signed in the Signature element along with the
referenced web page.
[r03-13] The required ConfidentialityLabel element contains the actual information about the
security classification marking (e.g., NATO UNCLASSIFIED) of the data objects.
[r04-06]The required SecurityPolicyIdentifier specifies the security policy, e.g. NATO.
[s07-09]The required SecurityClassification element specifies the sensitivity of the data object,
e.g. UNCLASSIFIED.
[r10-12]The optional SecurityCategory element can be PERMISSIVE, RESTRICTIVE or
INFORMATIVE which is expressed by its required Type attribute.
 [r16-38] The optional dsig:Signature signs the LabeledObjectGroup element and thus binds
the information contained in ConfidentialityLabel to the data objects contained referenced by the
dsig:Reference elements; it conforms to the XML Signature standard [XML-Sig].

A4.2.2 Enveloping Example
The following example shows an enveloping security label for a base64 encoded binary image in JPEG
format:

 [i01] <SecurityLabel>
 [i02] <LabeledObjectGroup Id=”mySecondLabeledObject“>

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 111

 [i03] <ConfidentialityLabel>
 [i04] <SecurityPolicyIdentifier>
 [i05] NATO
 [i06] </SecurityPolicyIdentifier>
[i07] <SecurityClassification>
[i08] UNCLASSIFIED
[i09] </SecurityClassification>
[i10] <SecurityCategory Type="PERMISSIVE">
[i11] RELEASABLE FOR INTERNET TRANSMISSION
[i12] </SecurityCategory>

 [i13] </ConfidentialityLabel>
 [i14] <Object MimeType="image/jpg" Encoding="base64">
 [i15] 9j/4AAQSkZJRgABAgAAZABkAAD/7AARRHVja3kAAQAEAAAAPAAA/+4AJkFk
 [i16] b2JlAGTAAAAAAQMAFQQDBgoNAAAFBgAACJcAAA0rAAATN//bAIQABgQEBAUE
 [] ...
 [i17] </Object>
 [i18] </LabeledObjectGroup>
 </SecurityLabel>

 [i14-17] The IncludedObject element contains the data object as content. The data object can be an
octet stream as in this case or itself be a node-set.

A4.2.3 Enveloped Example
This example shows an enveloped security label:

 [e01] <target>
 [e02] <coordinates>
 [e03] <x>12345</x>
 [e04] <y>67890</y>
 [e05] </coordinates>
 [e06] <SecurityLabel
 [e06a] xmlns:slab="http://nc3a.nato.int/2004/06/xmlslab#">
 [e07] <LabeledObjectGroup Id="myLabeledObject">
 [e08] <ConfidentialityLabel>
 [e09] <SecurityPolicyIdentifier>
 [e10] NATO
 [e11] </SecurityPolicyIdentifier>
 [e12] <SecurityClassification>
 [e13] UNCLASSIFIED
 [e14] </SecurityClassification>
 [e15] <SecurityCategory type="Permissive">
 [e16] RELEASABLE FOR INTERNET TRANSMISSION
 [e17] </SecurityCategory>
 [e18] </ConfidentialityLabel>
 [e27] </LabeledObjectGroup>
 [e28] </SecurityLabel>
 [e29] </target>
[e06-28] The SecurityLabel element appears as child of another element.

A4.2.4 Core Security Label Syntax
Please note that the core security label syntax has not been updated to the alternate version!
The general structure of an XML security label is described in Security Label Overview and Examples
(Section A4.2). This section provides detailed syntax of the core security label. Features described in this
section are mandatory to implement unless otherwise indicated. The syntax is defined via DTDs and
[XML-Schema] with the following XML preamble, declaration, and internal entity.

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 112 RTO-TR-IST-061

 Schema Definition:

 <?xml version="1.0" encoding="utf-8"?>
 <!DOCTYPE schema
 PUBLIC "-//W3C//DTD XMLSchema 200102//EN"
 "http://www.w3.org/2001/XMLSchema.dtd"
 [
 <!ATTLIST schema
 xmlns:sl CDATA #FIXED http://www.nc3a.nato.int/2004/06/xmlslab#>
 <!ENTITY slab ‘http://www.nc3a.nato.int/2004/06/xmlslab#’>
 <!ENTITY % p ‘‘>
 <!ENTITY % s ‘‘>
]>
 <schema xmlns=http://www.w3.org/2001/XMLSchema
 xmlns:slab=http://www.nc3a.nato.int/2004/06/xmlslab#
 xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
 targetNamespace="http://www.nc3a.nato.int/2004/06/xmlslab#"
 elementFormDefault="qualified" version="0.1">

 DTD:

 <!ENTITY % Category.ANY ‘‘>
 <!ENTITY % Object.ANY ‘‘>
 <!ENTITY % Method.ANY ‘‘>
 <!ENTITY % Transform.ANY ‘‘>

A4.2.4.1 The SecurityLabel Element

The SecurityLabel element is the root element of an XML Security Label. It contains one or more
LabeledObjectGroup elements and zero or one dsig:Signature element. An Iimplementation
MUST generate laxly schema valid [XML-schema] SecurityLabel elements as specified by the
following schema:

 Schema Definition:

 <element name="SecurityLabel" type="slab:SecurityLabelType"/>
 <complexType name="SecurityLabelType">
 <sequence>
 <sequence maxOccurs="unbounded">
 <element ref="slab:LabeledObjectGroup"/>
 </sequence>
 <element ref="dsig:Signature" minOccurs="0"/>
 </sequence>
 <attribute name="Id" type="ID" use="optional"/>
 </complexType>

 DTD:

 <!ELEMENT SecurityLabel (LabeledObjectGroup, Signature?)>
 <!ATTLIST SecurityLabel
 xmlns CDATA #FIXED ‘http://www.nc3a.nato.int/2004/06/xmlslab’
 Id ID #IMPLIED
 >

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 113

A4.2.4.2 The LabeledObjectGroup Element

The LabeledObjectGroup element must contain one Confidentialitylabel element. It binds
the information on security classification specified in the Confidentialitylabel element to the
content of its dsig:Object child elements. If the label has no children, the label applies to its parent,
but it does not apply to its parents children. The LabeledObjectGroup element may contain an optional
ID attribute that will allow it to be referenced, e.g. by the signature element.

 Schema Definition:

 <element name="LabeledObjectGroup"
 type="slab:LabeledObjectGroupType"/>
 <complexType name="LabeledObjectGroupType">
 <sequence>
 <element ref="slab:ConfidentialityLabel"/>
 <choice maxOccurs="unbounded">
 <element ref="dsig:Reference"/>
 <element ref="dsig:Object"/>
 </choice>
 </sequence>
 <attribute name="Id" type="ID" use="optional"/>
 </complexType>

 DTD:

 <!ELEMENT LabeledObjectGroup (ConfidentialityLabel,
 (dsig:Reference | dsig:Object)+)>
 <!ATTLIST LabeledObjectGroup
 Id ID #IMPLIED
 >

A4.2.4.3 The ConfidentialityLabel Element

ConfidentialityLabel is a required element that specifies the security classification of the data
objects included or referenced in its LabeledObjectGroup parent; it may contain an optional ID
attribute.
The structure of the ConfidentialityLabel element is modeled after the X.841 [X.841]
confidentiality label.

 Schema Definition:

 <element name="ConfidentialityLabel"
 type="slab:ConfidentialityLabelType"/>
 <complexType name="ConfidentialityLabelType">
 <sequence>
 <element ref="slab:SecurityPolicyIdentifier"/>
 <element ref="slab:SecurityClassification"/>
 <element ref="slab:PrivacyMark" minOccurs="0"/>
 <element ref="slab:SecurityCategory" minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>
 </complexType>

 DTD:

 <!ELEMENT ConfidentialityLabel (SecurityPolicyIdentifier,
 SecurityClassification, PrivacyMark?, SecurityCategory*)>

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 114 RTO-TR-IST-061

 <!ATTLIST ConfidentialityLabel
 Id ID #IMPLIED
 >

A4.2.4.4 The SecurityPolicyIdentifier Element

SecurityPolicyIdentifier is a required element that specifies the security policy, e.g. NATO.

 Schema Definition:

 <element name="SecurityPolicyIdentifier" type="token"/>

 DTD:

 <!ELEMENT SecurityPolicyIdentifier (#PCDATA)>

A4.2.4.5 The SecurityClassification Element

SecurityClassification is a required element that specifies the sensitivity of the data objects.

 Schema Definition:

 <element name="SecurityClassification"
 type="slab:SecurityClassificationType"/>
 <simpleType name="SecurityClassificationType">
 <restriction base="token">
 <enumeration value="UNMARKED"/>
 <enumeration value="UNCLASSIFIED"/>
 <enumeration value="RESTRICTED"/>
 <enumeration value="CONFIDENTIAL"/>
 <enumeration value="SECRET"/>
 <enumeration value="TOP SECRET"/>
 </restriction>

 DTD:

 <!ELEMENT SecurityClassification (#PCDATA)>

A4.2.4.6 The PrivacyMark Element

PrivacyMark is an optional element. The INFOSEC Technical and Implementation Guidance for
Electronic Labeling of NATO Information [NATO-Labeling] states:

“There is no plan for NATO to use the privacy-mark field. However NATO systems may
encounter the PrintableString ‘CLEAR’ to represent the ACP 127 Clear Service in this field.”

 Schema Definition:

 <element name="PrivacyMark" type="string"/>

 DTD:

 <!ELEMENT PrivacyMark (#PCDATA)>

A4.2.4.7 The SecurityCategory Element

SecurityCategory is a optional element that according to the INFOSEC Technical and Implementation
Guidance for Consistent Marking of NATO Information in C3 Systems [NATO-Marking] serves as an
indicator of:

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 115

1. an additional specific sensitivity;

2. a dissemination control; or

3. an informational marking on which no automated access control is performed.

 Schema Definition:

 <element name="SecurityCategory" type="slab:SecurityCategoryType"/>
 <complexType name="SecurityCategoryType" mixed="true">
 <attribute name="Type">
 <simpleType>
 <restriction base="token">
 <enumeration value="RESTRICTIVE"/>
 <enumeration value="PERMISSIVE"/>
 <enumeration value="INFORMATIVE"/>
 </restriction>
 </simpleType>
 </attribute>
 </complexType>

 DTD:

 <!ELEMENT SecurityCategory (#PCDATA %Category.ANY;)>
 <!ATTLIST SecurityCategory
 Type (RESTRICTIVE | PERMISSIVE | INFORMATIVE) #IMPLIED
 >

A4.2.4.8 The dsig:Object Element

dsig:Object is an optional element that may occur one or more times. When present, this element may
contain any data. The dsig:Object is of type dsig:ObjectType. Further information can be found in
section 4.5 of the XML Signature specification [XML-Sig].

A4.3 ALGORITHMS

Digest and encoding algorithms to be supported by security label applications are the same as for XML
signatures [XML-Sig]; the statements made in that reference about RECOMMENDED, OPTIONAL, and
REQUIRED features also apply for this specification. Transform algorithms are also the same with the
exception of the Enveloped Signature Transform. Instead, the Enveloped Security Label Transform MUST
be supported.
This section specifies the required Enveloped Security Label Transform algorithm; it removes the
SecurityLabel element from the calculation of the digest when the security label is within the content
that it is being labeled. This MAY be implemented via the RECOMMENDED XPath specification
specified in section 5.2; it MUST have the same effect as that specified by the XPath Transform.
An additional XPath Transform Sign Security Label is specified in section 5.3; it may be used by the
signature element of a security label to reference the corresponding LabeledObjectGroup element.

A4.3.1 XPath Filtering
The XPath Filtering Transform processing instructions are the same as for XML signatures; further
information can be found in section 6.6.3 of the XML Signature specification [XML-Sig].

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 116 RTO-TR-IST-061

A4.4 REFERENCES

HTTP

RFC 2616. Hypertext Transfer Protocol -- HTTP/1.0. J. Gettys, J. Mogul, H. Frystyk, L.
Masinter, P. Leach, T. Berners-Lee. June 1999. http://www.ietf.org/rfc/rfc2616.txt.

MIME

RFC 2045. Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies. N. Freed & N. Borenstein. November 1996. http://www.ietf.org/rfc/rfc2045.txt.

NATO-Labeling

INFOSEC Technical and Implementation Guidance for Electronic Labeling of NATO
Information, NATO C3 Board.

NATO-Marking

INFOSEC Technical and Implementation Guidance for Consistent Marking of NATO Information
in C3 Systems, NATO C3 Board.

Unicode

The Unicode Consortium. The Unicode Standard. http://www.unicode.org/unicode/standard/
standard.html.

UTF-16

RFC 2781. UTF-16, an encoding of ISO 10646. P. Hoffman , F. Yergeau. February 2000.
http://www.ietf.org/rfc/rfc2781.txt.

UTF-8

RFC 2279. UTF-8, a transformation format of ISO 10646. F. Yergeau. January 1998.
http://www.ietf.org/rfc/rfc2279.txt.

URI

RFC 2396. Uniform Resource Identifiers (URI): Generic Syntax. T. Berners-Lee, R. Fielding, L.
Masinter. August 1998. http://www.ietf.org/rfc/rfc2396.txt.

URL

RFC 1738. Uniform Resource Locators (URL). T. Berners-Lee, L. Masinter, and M. McCahill.
December 1994. http://www.ietf.org/rfc/rfc1738.txt.

URN

RFC 2141. URN Syntax. R. Moats. May 1997. http://www.ietf.org/rfc/rfc2141.txt.
RFC 2611. URN Namespace Definition Mechanisms. L. Daigle, D. van Gulik, R. Iannella, P.
Falstrom. June 1999. http://www.ietf.org/rfc/rfc2611.txt.

XML

Extensible Markup Language (XML) 1.0 (Second Edition). W3C Recommendation. T. Bray,
E. Maler, J. Paoli, C. M. Sperberg-McQueen. October 2000. http://www.w3.org/TR/2000/REC-
xml-20001006.

XML-C14N

Canonical XML. W3C Recommendation. J. Boyer. March 2001. http://www.w3.org/TR/2001/
REC-xml-c14n-20010315. http://www.ietf.org/rfc/rfc3076.txt.

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.unicode.org/unicode/standard/standard.html
http://www.unicode.org/unicode/standard/standard.html
http://www.ietf.org/rfc/rfc2781.txt
http://www.ietf.org/rfc/rfc2781.txt
http://www.ietf.org/rfc/rfc2279.txt
http://www.ietf.org/rfc/rfc2279.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc2141.txt
http://www.ietf.org/rfc/rfc2141.txt
http://www.ietf.org/rfc/rfc2611.txt
http://www.ietf.org/rfc/rfc2611.txt
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.ietf.org/rfc/rfc3076.txt

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 117

XML-ns

Namespaces in XML. W3C Recommendation. T. Bray, D. Hollander, A. Layman. January 1999.
http://www.w3.org/TR/1999/REC-xml-names-19990114.

XML-schema

XML Schema Part 1: Structures. W3C Recommendation. D. Beech, M. Maloney,
N. Mendelsohn, H. Thompson. May 2001. http://www.w3.org/TR/2001/REC-xmlschema-1-
20010502/.
XML Schema Part 2: Datatypes W3C Recommendation. P. Biron, A. Malhotra. May 2001.
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/.

XML-Sig

RFC 3275. XML Signature Syntax and Processing. http://www.w3.org/TR/xmldsig-core/
http://www.ietf.org/rfc/rfc3275.txt.

XPath

XML Path Language (XPath) Version 1.0. W3C Recommendation. J. Clark, S. DeRose.
October 1999. http://www.w3.org/TR/1999/REC-xpath-19991116.

XPointer

XML Pointer Language (XPointer). W3C Candidate Recommendation. S. DeRose, R. Daniel,
E. Maler. January 2001. http://www.w3.org/TR/2001/CR-xptr-20010911/.

XSL

Extensible Stylesheet Language (XSL). W3C Recommendation. S. Adler, A. Berglund,
J. Caruso, S. Deach, T. Graham, P. Grosso, E. Gutentag, A. Milowski, S. Parnell, J. Richman,
S. Zilles. October 2001. http://www.w3.org/TR/2001/REC-xsl-20011015/.

XSLT

XSL Transforms (XSLT) Version 1.0. W3C Recommendation. J. Clark. November 1999.
http://www.w3.org/TR/1999/REC-xslt-19991116.html.

X.841

Information technology – Security techniques –
Security information objects for access control, ITU-T X841 | ISO/IEC 15816, October 2000.

http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.ietf.org/rfc/rfc3275.txt
http://www.w3.org/TR/xmldsig-core/
http://www.ietf.org/rfc/rfc3275.txt
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/2001/CR-xptr-20010911/
http://www.w3.org/TR/2001/CR-xptr-20010911/
http://www.w3.org/TR/2001/REC-xsl-20011015/
http://www.w3.org/TR/2001/REC-xsl-20011015/
http://www.w3.org/TR/1999/REC-xslt-19991116.html
http://www.w3.org/TR/1999/REC-xslt-19991116.html

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 118 RTO-TR-IST-061

Appendix 5: XML Security Label Guidance and Matching Rules

A5.1 XML LABEL GUIDANCE
The syntax for the XML Security Label selected for the demonstrator is defined in Section A4.2.4 of
Appendix 4. For the CWID06 demonstrator, the following additional restrictions SHALL apply:

A5.1.1 LabeledObjectGroup
A SecurityLabel element SHALL only include a single LabeledObjectGroup. The ID if the
LabeledObjectGroup SHALL be one of the following:

• informationSecurityLabel
• privilegeSecurityLabel

The LabeledObjectGroup SHALL only include a single ConfidentialityLabel.

A5.1.2 SecurityPolicyIdentifier
The SecurityPolicyIdentifier SHALL be RTO-IST-061-Mission.

A5.1.3 SecurityClassification
The classification TOP SECRET SHALL not be used.

A5.1.4 PrivacyMark
PrivacyMark element SHALL not be present.

A5.1.5 SecurityCategory
To simply prosessing, a SecurityCategory PCDATA SHALL consist of the following components:

<CATEGORY SET> <CATEGORIES>

Each category in <CATEGORIES> SHALL be separated by space.

The following sets SHALL be supported:

Category Set Category type Allowed elements (categories)
EYES ONLY Permissive • Any 2 letter country

code
DEPARTMENT Restrictive • INTELLIGENCE

• LOGISTICS
• CRYPTO

RELEASABLE TO Permissive • RTO-IST-061
• Any 2 letter country

code for countries
not in the group

RELEASABLE TO Informative • INTERNET

Additional sets may be added on demand later.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 119

Examples:

A Norwegian privilegeSecurityLabel will usually include these categories:

 <SecurityLabel>
 <LabeledObjectGroup Id="privilegeSecurityLabel">
 <ConfidentialityLabel>
 <SecurityPolicyIdentifier>
 RTO-IST-061-Mission
 </SecurityPolicyIdentifier>
 <SecurityClassification>
 SECRET
 </SecurityClassification>
 <SecurityCategory type="Permissive">
 NO EYES ONLY
 </SecurityCategory>
 <SecurityCategory type="Permissive">
 RELEASABLE TO RTO-IST-061
 </SecurityCategory>
 </ConfidentialityLabel>
 </LabeledObjectGroup>
 </SecurityLabel>

Some informationSecurityLabel categories that may be defined by this user:
 <SecurityCategory type="Permissive">
 NO EYES ONLY
 </SecurityCategory>

The labeled information shall not be distributed to other countries.

 <SecurityCategory type="Permissive">
 NO PO EYES ONLY
 </SecurityCategory>
 The labeled information is restricted to a subset of the RTO-IST-061 group

 <SecurityCategory type="Permissive">
 RELEASABLE TO RTO-IST-061 UK
 </SecurityCategory>

The labeled information may be distributed to a country not in the group.

 <SecurityCategory type=" Informative">
 RELEASABLE TO INTERNET
 </SecurityCategory>

In addition, the DEPARTMENT set may be used to further restrict access, i.e. to a subset of users within
the RTO-IST group or countries.

A5.2 SECURITY LABEL MATCHING RULES

When comparing a Security Label vs. another as a part of an access control check (e.g. privilege vs.
information) the following rule SHALL apply:

A Security label A shall only have access to a Security Label B if and only if all of the following is true:

SecurityPolicyIdentifier
1. The SecurityPolicyIdentifiers are be identical. (I.g. both NATO)

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 120 RTO-TR-IST-061

SecurityClassification
2. The SecurityClassification of label A is equvalent or higher than label B

SecurityCategories, restrictive type
3. If label B has a restrictive category set, label A has an identical set and ALL categories in B are

present in A.

SecurityCategories, permissive type
4. If label B has a permissive category set, label A has an identical set and AT LEAST ONE of the

categories in B is present in A.

Note: Informative category sets shall be ignored.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 121

Appendix 6: MTI Tracks Model

A6.1 MTI TRACKS XML SCHEMA

Here is the Xml Schema file representing the MTI Tracks data model:

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSPY v2004 rel. 3 U (http://www.xmlspy.com) by Thales
(THALES COMMUNICATION) -->
<!-- edited with XMLSpy v2006 sp2 U (http://www.altova.com) by THALES
COMMUNICATIONS (THALES COMMUNICATIONS) -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified" version="1">
 <!--
 : XML schema definition for No UAV MTI exchange between ISTARs in Cwid
2006

 : Property of Thales Communications France

 : February, 20th 2006

 -->
 <!-- *************************** -->
 <!-- Type definition -->
 <!-- *************************** -->
 <!-- *************************** -->
 <!-- Type Simple -->
 <!-- *************************** -->
 <!-- Type Date & Heure -->
 <xs:simpleType name="type_Date_Time">
 <xs:restriction base="xs:dateTime">
 <xs:minInclusive value="1901-01-01T00:00:00"/>
 <xs:maxInclusive value="2036-12-31T23:59:59"/>
 <xs:pattern value=".{19}"/>
 </xs:restriction>
 </xs:simpleType>
 <!-- Type TIME_ZONE -->
 <xs:simpleType name="TIMEZONE_TYPE">
 <xs:restriction base="xs:string">
 <xs:enumeration value="A"/>
 <xs:enumeration value="B"/>
 <xs:enumeration value="C"/>
 <xs:enumeration value="D"/>
 <xs:enumeration value="E"/>
 <xs:enumeration value="F"/>
 <xs:enumeration value="G"/>
 <xs:enumeration value="H"/>
 <xs:enumeration value="I"/>
 <xs:enumeration value="J"/>
 <xs:enumeration value="K"/>
 <xs:enumeration value="L"/>
 <xs:enumeration value="M"/>
 <xs:enumeration value="N"/>
 <xs:enumeration value="O"/>
 <xs:enumeration value="P"/>
 <xs:enumeration value="Q"/>

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 122 RTO-TR-IST-061

 <xs:enumeration value="R"/>
 <xs:enumeration value="S"/>
 <xs:enumeration value="T"/>
 <xs:enumeration value="U"/>
 <xs:enumeration value="V"/>
 <xs:enumeration value="W"/>
 <xs:enumeration value="X"/>
 <xs:enumeration value="Y"/>
 <xs:enumeration value="Z"/>
 </xs:restriction>
 </xs:simpleType>
 <!-- Types Geographiques -->
 <xs:simpleType name="type_Latitude">
 <xs:restriction base="xs:double">
 <xs:minInclusive value="-90"/>
 <xs:maxInclusive value="90"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="type_Longitude">
 <xs:restriction base="xs:double">
 <xs:minInclusive value="-180"/>
 <xs:maxInclusive value="180"/>
 </xs:restriction>
 </xs:simpleType>
 <!-- Type MOB_TYPE -->
 <xs:simpleType name="MOB_TYPE">
 <xs:restriction base="xs:string">
 <xs:enumeration value="UNKNOWN"/>
 <xs:enumeration value="TRACKED"/>
 <xs:enumeration value="WHEELED"/>
 <xs:enumeration value="ROTARY_WINGS"/>
 </xs:restriction>
 </xs:simpleType>
 <!-- Type TRACK_DOT_TYPE -->
 <xs:simpleType name="TRACK_DOT_TYPE">
 <xs:annotation>
 <xs:documentation>The items has to be defined according to
the capacity of the sensor</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:enumeration value="UNKNOWN"/>
 <xs:enumeration value="ON_ROAD"/>
 <xs:enumeration value="OFF_ROAD"/>
 <xs:enumeration value="AIR"/>
 <xs:enumeration value="SURFACE"/>
 </xs:restriction>
 </xs:simpleType>
 <!-- Type Ellipse -->
 <xs:complexType name="ELLIPSE_TYPE">
 <xs:sequence>
 <xs:element name="FIRST_AXIS" type="xs:integer"/>
 <xs:element name="FIRST_AXIS_ORIENTATION">
 <xs:simpleType>
 <xs:restriction base="xs:double">
 <xs:minInclusive value="-180"/>
 <xs:maxInclusive value="180"/>
 </xs:restriction>
 </xs:simpleType>

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 123

 </xs:element>
 <xs:element name="SECOND_AXIS" type="xs:integer"/>
 </xs:sequence>
 </xs:complexType>

 <!-- Type GEOREF -->
 <xs:simpleType name="ELLIPSOID_TYPE">
 <xs:restriction base="xs:string">
 <xs:enumeration value="WGS84"/>
 </xs:restriction>
 </xs:simpleType>

 <!-- *************************** -->
 <!-- Type Complex -->
 <!-- *************************** -->
 <!-- Type TRACK_STATE -->
 <xs:complexType name="TRACK_STATE">
 <xs:all>
 <xs:element name="LAT" type="type_Latitude"/>
 <xs:element name="LON" type="type_Longitude"/>
 <xs:element name="ALTITUDE" type="xs:double" minOccurs="0"/>
 <xs:element name="ELLIPSE" type="ELLIPSE_TYPE"
minOccurs="0"/>
 <xs:element name="DTG" type="type_Date_Time"/>
 <xs:element name="ROUTE" type="xs:decimal" minOccurs="0"/>
 <xs:element name="SPEED" type="xs:decimal" minOccurs="0"/>
 </xs:all>
 </xs:complexType>
 <!-- Type TRACK -->
 <xs:complexType name="TRACK_TYPE">
 <xs:sequence>
 <xs:element name="NAME" type="xs:string" minOccurs="0"/>
 <xs:element name="ID" type="xs:integer"/>

 <xs:element name="MOB_TYPE" type="MOB_TYPE"/>
 <xs:element name="SYST_STATUS" type="TRACK_SYST_STATUS"/>
 <xs:element name="DOT_TYPE" type="TRACK_DOT_TYPE"
minOccurs="0"/>

 <xs:element name="STATE" type="TRACK_STATE"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <!-- Type HEADER_TYPE -->
 <xs:complexType name="HEADER_TYPE">
 <xs:sequence>

 <xs:element name="MSGCONTENTS" type="xs:string"/>

 <xs:element name="MSG_TIMESTAMP" type="type_Date_Time"/>
 <xs:element name="ELLIPSOID" type="ELLIPSOID_TYPE"/>
 <xs:element name="TIMEZONE" type="TIMEZONE_TYPE"/>
 </xs:sequence>
 </xs:complexType>
 <!-- Type SENSOR_DESCRIPTION -->

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 124 RTO-TR-IST-061

 <xs:complexType name="SENSOR_DESCRIPTION">
 <xs:sequence>
 <xs:element name="NAME" type="xs:string" minOccurs="0"/>
 <xs:element name="ID"/>
 <xs:element name="TYPE" type="SENSOR_TYPE"/>
 <xs:element name="LAT" type="type_Latitude" minOccurs="0"/>
 <xs:element name="LON" type="type_Longitude" minOccurs="0"/>
 <xs:element name="ALTITUDE" type="xs:double" minOccurs="0"/>
 <xs:element name="TIMELINE" type="TIME_SEQUENCE_TYPE"
minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <!-- Type SUR_REPORT_DESCRIPTION -->
 <xs:complexType name="SURV_REPORT_DESCRIPTION">
 <xs:sequence>
 <xs:element name="HEADER" type="HEADER_TYPE"/>
 <xs:element name="SENSOR_USED" type="SENSOR_DESCRIPTION"
minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="TRACK" type="TRACK_TYPE" minOccurs="0"
maxOccurs="unbounded">
 <xs:keyref name="Track_Sensor_Ref" refer="Sensor_Key">
 <xs:selector xpath="."/>
 <xs:field xpath="SENSOR_ID"/>
 </xs:keyref>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <!-- *************************** -->
 <!-- Core document -->
 <!-- *************************** -->
 <xs:element name="SURV_REPORT" type="SURV_REPORT_DESCRIPTION">
 <xs:annotation>
 <xs:documentation>Surveillance report export from No UAV
MTI</xs:documentation>
 </xs:annotation>
 <xs:key name="Sensor_Key">
 <xs:selector xpath="SENSOR_USED"/>
 <xs:field xpath="ID"/>
 </xs:key>
 </xs:element>
</xs:schema>

A6.2 MTI TRACKS ADDITIONAL INFORMATION

HEADER INFORMATION

1. Purpose
To give general information related to the Surv Report.

2. Format
Complex type.

3. Example
N/A

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 125

4. Comment
All types of Surv Report shall have the same Header.

5. MSGCONTENTS

• Purpose
A short description of contents of the message.

• Format
Free text

• Example
Sensor information indicates enemy activity south of SOUTHAMPTON.

• Comment
This information must be available in the list of reports.

6. MSG TIMESTAMP

• Purpose
Stating the time for the issue of the message.

• Format
Defined in the XSD.

• Example
2004-10-05 T17:41:45

• Comment

7. ELLIPSOID

• Purpose
Stating the geographic reference for all positions in the message.

• Format
Enumeration value defined in the XSD.

• Example
WGS84

• Comment

8. TIMEZONE

• Purpose
Stating the time zone for all timing in the message.

• Format
Enumeration values defined in the XSD.

• Example
Z

• Comment

TRACK

9. NAME

• Purpose
Give short information of the track.

• Format
Free text

• Example
AKS ISTARS TRACK 2006_01_25_01.

• Comment

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 126 RTO-TR-IST-061

10. ID

• Purpose
Giving a unique identification of the track. If an ID is reused, this shall be considered as an update of the
previous track.

• Format

• Example

• Comment

The ID convention needs to be defined

11. MOB TYPE

• Purpose
Stating the kind of object.

• Format
Enumeration values defined in the XSD.

• Example
TRACKED

• Comment

13. DOT_TYPE

• Purpose
Stating the objects capability or possibility to follow roads.

• Format

• Example

• Comment

13. SENSOR ID

• Purpose
Identify the sensor(s) that provided the raw information.

• Format

• Example

• Comment

The referenced sensors must be transmitted in the same message.

14. STATE

• Purpose
Defines one single state (adjusted plot).

• Format
Complex type

• Example
N/A

• Comment
N/A

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 127

• LAT
o Purpose:

The north position of the State in decimal degrees according the ellipsoid of the header.
o Format:

o Example:

o Comment

• LON
o Purpose:

The east position of the state in decimal degrees according the ellipsoid of the header.
o Format:

o Example:

o Comment

• ALTITUDE
o Purpose:

The altitude above sea level of the State in decimal meters.
o Format:

o Example:

o Comment

• ELLIPSE

o Purpose:
Indicates the possible uncertainty in the position (by stating an ellipse wherein the position will be).

o Format:

o Example:

o Comment

o First Axis

Purpose:
Indicates the length of the first axis in meters.
Format:
Integer
Example:
100
Comment

• First Axis orientation
Purpose:
Indicates the orientation of the first axis in degrees (0 degrees = North).
Format:
Integer
Example:
100
Comment

• Second Axis

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 128 RTO-TR-IST-061

Purpose:
Indicates the length of the second axis in meters.
Format:
Integer
Example:
100
Comment

• DTG
o Purpose:

States the time of the detected plot.
o Format:

o Example:

o Comment

• ROUTE
o Purpose:

States the direction in decimal degrees from the north of the object that the plot represents.
o Format:

o Example:

o Comment

• SPEED

o Purpose:
States the speed in m.s-1 of the object that the plot represents.

o Format:

o Example:

o Comment

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 129

Appendix 7: XML Schema for the UDDI Publishing API Extensions

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSpy v2006 sp1 U (http://www.altova.com) by
Raymond Haakseth (Norwegian Defence Research Establishment) -->
<xs:schema xmlns:xs=http://www.w3.org/2001/XMLSchema
xmlns:sp="http://www.rtg027.nato/xmlns/cwid/servicePublishing"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:uddi="urn:uddi-org:api_v3"
targetNamespace=http://www.rtg027.nato/xmlns/cwid/servicePublishing
elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <!-- author: Raymond Haakseth (Raymond.Haakseth@ffi.no) -->
 <xs:import namespace="urn:uddi-org:api_v3" schemaLocation="uddi_v3.xsd"/>
 <xs:element name="publishServices" type="sp:publishServices"
 final="restriction">
 <xs:annotation>
 <xs:documentation>
 Represent the message to be used to publish services.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="publishServices" final="restriction">
 <xs:sequence>
 <xs:element name="authToken" type="uddi:authToken"/>
 <xs:element name="service" type="sp:service" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="service" final="restriction">
 <xs:sequence>
 <xs:element name="serviceName" type="xs:string"/>
 <xs:element name="description" type="xs:string"/>
 <xs:element name="validUntil" type="xs:dateTime"/>
 <xs:element name="serviceEndpoint" type="xs:anyURI"/>
 <xs:element name="distinguishedName" type="xs:string"/>
 <xs:element name="wsdlReference" type="sp:wsdlReference">
 <xs:annotation>
 <xs:documentation>
 Contains a reference to the abstract part of a

well defined wsdl document.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="businessIdString" type="xs:string"/>
 <xs:element name="serviceKey" type="uddi:serviceKey" minOccurs="0">
 <xs:annotation>
 <xs:documentation>
 The service key is needed if this is an update.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="serviceTaxonomy" type="xs:string" minOccurs="0"/>
 <xs:element name="topic" type="sp:topic" minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element name="position" type="xs:anyURI" minOccurs="0">
 <xs:annotation>
 <xs:documentation>

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 130 RTO-TR-IST-061

 URI to the Web Service implementing platform position.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="coverageArea" type="sp:coverageArea"
minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="wsdlReference">
 <xs:restriction base="xs:string">
 <xs:pattern value="ACP_.*Interface"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="topic" final="restriction">
 <xs:restriction base="xs:string">
 <xs:pattern value="ACP_.*Topic"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="coverageArea" final="restriction">
 <xs:sequence>
 <xs:element name="upperLeft" type="sp:upperLeft"/>
 <xs:element name="lowerRight" type="sp:lowerRight"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="upperLeft" final="restriction">
 <xs:sequence>
 <xs:element name="longitude" type="sp:Longitude"/>
 <xs:element name="latitude" type="sp:Latitude"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="lowerRight" final="restriction">
 <xs:sequence>
 <xs:element name="longitude" type="sp:Longitude"/>
 <xs:element name="latitude" type="sp:Latitude"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Longitude" final="restriction">
 <xs:sequence>
 <xs:element name="degrees" type="sp:LongitudeDegree">
 <xs:annotation>
 <xs:documentation>
 Value range: -180 - 180
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="minutes" type="sp:Minutes">
 <xs:annotation>
 <xs:documentation>
 Value range: 0 - 59
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="seconds" type="sp:Seconds">
 <xs:annotation>
 <xs:documentation>
 Value range: 0 - 59
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 131

 </xs:complexType>
 <xs:complexType name="Latitude" final="restriction">
 <xs:sequence>
 <xs:element name="degrees" type="sp:LatitudeDegree">
 <xs:annotation>
 <xs:documentation>
 Value range: -90 - 90
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="minutes" type="sp:Minutes">
 <xs:annotation>
 <xs:documentation>
 Value range: 0 - 59
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="seconds" type="sp:Seconds">
 <xs:annotation>
 <xs:documentation>
 Value range: 0 - 59
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="LatitudeDegree" final="restriction">
 <xs:restriction base="xs:int">
 <xs:minInclusive value="-90"/>
 <xs:maxInclusive value="90"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="Seconds" final="restriction">
 <xs:restriction base="xs:int">
 <xs:minInclusive value="0"/>
 <xs:maxInclusive value="59"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="Minutes" final="restriction">
 <xs:restriction base="xs:int">
 <xs:minInclusive value="0"/>
 <xs:maxInclusive value="59"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="LongitudeDegree" final="restriction">
 <xs:restriction base="xs:int">
 <xs:minInclusive value="-180"/>
 <xs:maxInclusive value="180"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="resetRegistry" type="sp:resetRegistry"
final="restriction">
 <xs:annotation>
 <xs:documentation>
 Element used to reset the registered services of the nation
 selected in nation. Strictly used for demo administration.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="resetRegistry" final="restriction">

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 132 RTO-TR-IST-061

 <xs:sequence>
 <xs:element name="authToken" type="uddi:authToken"/>
 <xs:element name="nation" type="sp:nation"/>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="nation" final="restriction">
 <xs:restriction base="xs:string">
 <xs:enumeration value="FR"/>
 <xs:enumeration value="GE"/>
 <xs:enumeration value="NL"/>
 <xs:enumeration value="NO"/>
 <xs:enumeration value="PL"/>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 133

Appendix 8: Position Service Description

The positionService.wsdl file describes a simple request/response web service that can be used to retrieve
position information. The format of the return value from this service is specified in the position.xsd file.

A service/ asset that expose information of its current position must implement the position service
described below.

A8.1 POSITIONSERVICE.WSDL

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:pos="http://www.rtg027.nato/xmlns/cwid/positionService/position"
xmlns:tns="http://www.rtg027.nato/xmlns/cwid/positionService"
targetNamespace="http://www.rtg027.nato/xmlns/cwid/positionService">
 <!-- TYPES-->
 <types>
 <xs:schema targetNamespace="http://www.rtg027.nato/xmlns/cwid/positionService">
 <xs:import schemaLocation="position.xsd"
namespace="http://www.rtg027.nato/xmlns/cwid/positionService/position"/>
 </xs:schema>
 </types>
 <!-- MESSAGES -->
 <message name="getPositionRequest">
 </message>
 <message name="getPositionResponse">
 <part name="result" element="pos:position"/>
 </message>
 <message name="getPositionFault"/>
 <!--PORT TYPE -->
 <portType name="positionServicePortType">
 <operation name="getPosition">
 <input message="tns:getPositionRequest"/>
 <output message="tns:getPositionResponse"/>
 <fault name="getPositionFault" message="tns:getPositionFault"/>
 </operation>
 </portType>
 <!-- BINDING -->
 <binding name="positionServiceBinding" type="tns:positionServicePortType">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="getPosition">
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 134 RTO-TR-IST-061

 </output>
 <fault name="getPositionFault">
 <soap:fault name="faultMessage" use="literal"/>
 </fault>
 </operation>
 </binding>
 <!-- SERVICE -->
 <service name="positionService">
 <port name="position" binding="tns:positionServiceBinding">
 <soap:address location="http://some.endpoint"/>
 </port>
 </service>
</definitions>

A8.2 POSITION.XSD

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSpy v2006 sp1 U (http://www.altova.com) by Raymond Haakseth (Norwegian
Defence Research Establishment) -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://www.rtg027.nato/xmlns/cwid/positionService/position"
targetNamespace="http://www.rtg027.nato/xmlns/cwid/positionService/position"
elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="position">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="longitude" type="tns:Longitude"/>
 <xs:element name="latitude" type="tns:Latitude"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="Longitude">
 <xs:sequence>
 <xs:element name="degrees" type="tns:LongitudeDegree">
 <xs:annotation>
 <xs:documentation>Value range: -180 - 180</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="minutes" type="tns:Minutes">
 <xs:annotation>
 <xs:documentation>Value range: 0 - 59</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="seconds" type="tns:Seconds">
 <xs:annotation>
 <xs:documentation>Value range: 0 - 59</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Latitude">
 <xs:sequence>

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 135

 <xs:element name="degrees" type="tns:LatitudeDegree">
 <xs:annotation>
 <xs:documentation>Value range: -90 - 90</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="minutes" type="tns:Minutes">
 <xs:annotation>
 <xs:documentation>Value range: 0 - 59</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="seconds" type="tns:Seconds">
 <xs:annotation>
 <xs:documentation>Value range: 0 - 59</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="LongitudeDegree">
 <xs:restriction base="xs:int">
 <xs:minInclusive value="-180"/>
 <xs:maxInclusive value="180"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="Minutes">
 <xs:restriction base="xs:int">
 <xs:minInclusive value="0"/>
 <xs:maxInclusive value="59"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="Seconds">
 <xs:restriction base="xs:int">
 <xs:minInclusive value="0"/>
 <xs:maxInclusive value="59"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="LatitudeDegree">
 <xs:restriction base="xs:int">
 <xs:minInclusive value="-90"/>
 <xs:maxInclusive value="90"/>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 136 RTO-TR-IST-061

Appendix 9: The XML Schema of the LDAP
Synchronization Component

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:sbn="http://www.rtg027.nato/xmlns/cwid/synchronization_between_nations"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.rtg027.nato/xmlns/cwid/synchronization_between_nations"
elementFormDefault="qualified" attributeFormDefault="qualified" version="draft">
 <!-- Basic Types -->
 <xsd:simpleType name="LDIFDataType">
 <xsd:restriction base="xsd:string"/>
 </xsd:simpleType>
 <xsd:simpleType name="LDAPSynchronisationCounterType">
 <xsd:restriction base="xsd:positiveInteger"/>
 </xsd:simpleType>
 <xsd:simpleType name="LDAPSynchronisationTimestampType">
 <xsd:restriction base="xsd:dateTime"/>
 </xsd:simpleType>
 <!-- Type representing the header of an LDAP directory synchronisation topic -->
 <xsd:complexType name="LDAPSynchronisationTopicHeaderType">
 <xsd:sequence>
 <xsd:element name="counter" type="sbn:LDAPSynchronisationCounterType"/>
 <xsd:element name="timestamp"
type="sbn:LDAPSynchronisationTimestampType"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- Type representing the payload of an LDAP directory synchronisation topic -->
 <xsd:complexType name="LDAPSynchronisationTopicPayLoadType">
 <xsd:sequence>
 <xsd:element name="LDIFData" type="sbn:LDIFDataType"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- Type representing an LDAP directory synchronisation topic -->
 <xsd:complexType name="LDAPSynchronisationTopicType">
 <xsd:sequence>
 <xsd:element name="header"
type="sbn:LDAPSynchronisationTopicHeaderType"/>
 <xsd:element name="payload"
type="sbn:LDAPSynchronisationTopicPayLoadType"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- The LDAP directory synchronisation topic itself -->
 <xsd:element name="LDAPSynchronisationTopic"
type="sbn:LDAPSynchronisationTopicType"/>
</xsd:schema>

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 137

Appendix 10: MIP Elements Selection for RTG Demonstration

Version of object-oriented or RDBMS (To be decided) MIP XML Schema to use: C2IEDM 6.15e
France will provide a discussion paper beginning next week (6 February).

The following list of MIP objects should be included (the MIP elements in grey will not be used for
demonstration purposes):

ObjectType
 FacilityType
 BridgeType
 MilitaryObstacleType
 FeatureType
 ControlFeatureType
 GeographicFeatureType
 MaterielType
 EquipmentType
 AircraftType
 VehicleType
 VesselType
 ConsumableMaterielType
 AmmunitionType
 OrganisationType
 GovernmentOrganisationType
 MilitaryOrganisationType
 UnitType
ObjectItem
 Organisation
 Unit
 Materiel
 Facility
 Bridge
 MilitaryObstacle
 Minefield
 Feature
 GeographicFeature
 ControlFeature
ObjectItemStatus
 GeographicFeatureStatus
 ControlFeatureStatus
 FacilityStatus
 MaterielStatus
 OrganisationStatus
Affiliation
 AffiliationExerciseGroup
 AffiliationFunctionalGroup
 AffiliationGeopolitical
ObjectItemAffiliation
ObjectItemAssociation
ObjectItemAssociationStatus

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 138 RTO-TR-IST-061

ObjectItemType
Holding mandatory for AbstractObjectItem
ReportingData
 ReportingDataAbsoluteTiming
Reference mandatory for AbstractRepportingData
Action
 ActionEvent
ObjectItemLocation
Location
 Line
 Point
 AbsolutePoint
 Surface
 PolygonArea
LinePoint

Context
ContextAssesment indirectly mandatory for AbstractLocation
ContextReportingDataAssociation indirectly mandatory for AbstractLocation
VerticleDistance

We now have a preliminary selection of objects.
The next steps should be:

- examine all attributes in these objects to select which ones to use (in light of optionality and
requirements)

- examine values in all *-code attributes, and maybe select a reduced set to implement where the
number of values is large (like in ActionEventCategoryCode)

A10.1 ATTRIBUTE SELECTION

As a general rule we keep all mandatory attributes (MA). If a mandatory attribute is not used for the
demonstration, we use the value “unknown” if possible. Otherwise we can use an existing value to be used
as “unknown” specifically for the demonstration.

Also as a general rule we leave out all optional (OP) attributes (not shown in table below). If a need for an
optional attribute arises, it may be added after discussion in the group.

The following table shows the entities with their attributes and optionality (entities marked yellow are not
relevant for the demonstration).

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 139

Entity Name Attribute Names Optionality
ABSOLUTE-POINT absolute-point-id (PK) (FK)

absolute-point-latitude-coordinate
absolute-point-longitude-coordinate
absolute-point-angular-precision-code
absolute-point-vertical-distance-id (FK)

MA
MA
MA
OP
OP

ACTION action-id (PK)
action-category-code
action-name

MA
MA
OP

ACTION-EVENT action-event-id (PK) (FK)
action-event-category-code

MA
MA

AFFILIATION affiliation-id (PK)
affiliation-category-code

MA
MA

AFFILIATION-
EXERCISE-GROUP

affiliation-id (PK) (FK)
affiliation-exercise-group-name

MA
MA

AFFILIATION-
FUNCTIONAL-GROUP

affiliation-id (PK) (FK)
affiliation-functional-group-code
affiliation-functional-group-name

MA
MA
MA

AFFILIATION-
GEOPOLITICAL

affiliation-id (PK) (FK)
affiliation-geopolitical-code

MA
MA

AIRCRAFT-TYPE aircraft-type-id (PK) (FK)
aircraft-type-category-code
aircraft-type-subcategory-code

MA
MA
OP

AMMUNITION-TYPE ammunition-type-id (PK) (FK)
ammunition-type-category-code
ammunition-type-calibre-text

MA
MA
OP

BRIDGE bridge-id (PK) (FK)
bridge-longest-span-length-dimension
bridge-span-quantity
bridge-usage-code

MA
OP
OP
OP

BRIDGE-TYPE bridge-type-id (PK) (FK)
bridge-type-design-type-code

MA
MA

CONSUMABLE-
MATERIEL-TYPE

consumable-materiel-type-id (PK) (FK)
consumable-materiel-type-category-code
consumable-materiel-type-subcategory-code
consumable-materiel-type-hazard-code
consumable-materiel-type-issuing-element-code
consumable-materiel-type-issuing-quantity
consumable-materiel-type-issuing-unit-of-measure-

code
consumable-materiel-type-issuing-weight-quantity
consumable-materiel-type-perishability-indicator-

code

MA
MA
OP
OP
OP
OP
OP

OP
OP

CONTROL-FEATURE control-feature-id (PK) (FK)
control-feature-category-code

MA
MA

CONTROL-FEATURE-
STATUS

control-feature-status-id (PK) (FK)
object-item-status-index (PK) (FK)
control-feature-status-investigation-status-code
control-feature-status-nbc-threat-level-code
control-feature-status-security-status-code
control-feature-status-usage-status-code

MA
MA
OP
OP
OP
MA

CONTROL-FEATURE-
TYPE

control-feature-type-id (PK) (FK)
control-feature-type-category-code

MA
MA

EQUIPMENT-TYPE equipment-type-id (PK) (FK)
equipment-type-category-code
equipment-type-loaded-weight-quantity
equipment-type-unloaded-weight-quantity

MA
MA
OP
OP

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 140 RTO-TR-IST-061

Entity Name Attribute Names Optionality
FACILITY facility-id (PK) (FK)

facility-category-code
facility-primary-construction-material-code
facility-height-dimension
facility-length-dimension
facility-width-dimension

MA
MA
OP
OP
OP
OP

FACILITY-STATUS facility-status-id (PK) (FK)
object-item-status-index (PK) (FK)
facility-status-category-code
facility-status-demolition-status-code
facility-status-mine-presence-code
facility-status-occupation-program-indicator-code
facility-status-operational-status-code
facility-status-operational-status-qualifier-code
facility-status-reserve-indicator-code
facility-status-security-status-code
facility-status-usage-status-code

MA
MA
MA
OP
OP
OP
MA
OP
OP
OP
OP

FACILITY-TYPE facility-type-id (PK) (FK)
facility-type-category-code

MA
MA

FEATURE feature-id (PK) (FK)
feature-category-code

MA
MA

FEATURE-TYPE feature-type-id (PK) (FK)
feature-type-category-code

MA
MA

GEOGRAPHIC-
FEATURE

geographic-feature-id (PK) (FK) MA

GEOGRAPHIC-
FEATURE-STATUS

geographic-feature-status-id (PK) (FK)
object-item-status-index (PK) (FK)
geographic-feature-status-code
geographic-feature-status-demolition-status-code
geographic-feature-status-mine-presence-code
geographic-feature-status-recirculation-indicator-

code
geographic-feature-status-surface-condition-code
geographic-feature-status-surface-firmness-code

MA
MA
MA
OP
OP
OP

OP
OP

GEOGRAPHIC-
FEATURE-TYPE

geographic-feature-type-id (PK) (FK)
geographic-feature-type-category-code

MA
MA

GOVERNMENT-
ORGANISATION-
TYPE

government-organisation-type-id (PK) (FK)
government-organisation-type-category-code
government-organisation-type-main-activity-code

MA
MA
OP

HOLDING object-item-id (PK) (FK)
object-type-id (PK) (FK)
holding-index (PK)
holding-operational-quantity
holding-total-quantity
reporting-data-id (FK)

MA
MA
MA
OP
OP
MA

LINE line-id (PK) (FK) MA
LINE-POINT line-id (PK) (FK)

line-point-index (PK)
line-point-sequence-quantity
line-point-point-id (FK)

MA
MA
MA
MA

LOCATION location-id (PK)
location-category-code

MA
MA

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 141

Entity Name Attribute Names Optionality
MATERIEL materiel-id (PK) (FK)

materiel-serial-number-identification-text
materiel-lot-identification-text
materiel-body-colour-code
materiel-marking-code
materiel-marking-colour-code

MA
OP
OP
OP
OP
OP

MATERIEL-STATUS materiel-status-id (PK) (FK)
object-item-status-index (PK) (FK)
materiel-status-category-code
materiel-status-demolition-status-code
materiel-status-operational-status-code
materiel-status-operational-status-qualifier-code
materiel-status-operational-status-mode-code
materiel-status-reserve-indicator-code
materiel-status-safety-status-code
materiel-status-usage-status-code

MA
MA
MA
OP
MA
OP
OP
OP
OP
OP

MATERIEL-TYPE materiel-type-id (PK) (FK)
materiel-type-category-code
materiel-type-reportable-item-text
materiel-type-stock-number-text
materiel-type-supply-class-code
materiel-type-maximum-height-dimension
materiel-type-maximum-length-dimension
materiel-type-maximum-width-dimension

MA
MA
OP
OP
OP
OP
OP
OP

MILITARY-OBSTACLE military-obstacle-id (PK) (FK)
military-obstacle-category-code

MA
MA

MILITARY-
OBSTACLE-TYPE

military-obstacle-type-id (PK) (FK)
military-obstacle-type-category-code

MA
MA

MILITARY-
ORGANISATION-
TYPE

military-organisation-type-id (PK) (FK)
military-organisation-type-category-code
military-organisation-type-service-code

MA
MA
MA

MINEFIELD minefield-id (PK) (FK)
minefield-depth-placement-code
minefield-mine-spacing-dimension
minefield-pattern-code
minefield-persistence-code
minefield-purpose-code
minefield-stopping-power-code

MA
OP
OP
OP
OP
OP
OP

OBJECT-ITEM object-item-id (PK)
object-item-category-code
object-item-name
object-item-alternate-identification-text

MA
MA
MA
OP

OBJECT-ITEM-
AFFILIATION

object-item-id (PK) (FK)
affiliation-id (PK) (FK)
object-item-affiliation-index (PK)
reporting-data-id (FK)

MA
MA
MA
MA

OBJECT-ITEM-
ASSOCIATION

object-item-association-subject-object-item-id (FK)
(PK)

object-item-association-object-object-item-id (FK)
(PK)

object-item-association-index (PK)
object-item-association-category-code
object-item-association-subcategory-code
action-task-id (FK)

MA

MA

MA
MA
OP

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 142 RTO-TR-IST-061

Entity Name Attribute Names Optionality
OBJECT-ITEM-
ASSOCIATION-
STATUS

object-item-association-subject-object-item-id (FK)
(PK)

object-item-association-object-object-item-id (FK)
(PK)

object-item-association-index (FK) (PK)
object-item-association-status-index (PK)
object-item-association-status-category-code
reporting-data-id (FK)

MA

MA

MA
MA
MA
MA

OBJECT-ITEM-
LOCATION

object-item-id (PK) (FK)
location-id (PK) (FK)
object-item-location-index (PK)
object-item-location-accuracy-quantity
object-item-location-bearing-angle
object-item-location-bearing-accuracy-angle
object-item-location-speed-rate
object-item-location-speed-accuracy-rate
object-item-location-use-category-code
reporting-data-id (FK)

MA
MA
MA
OP
OP
OP
OP
OP
OP
MA

OBJECT-ITEM-
STATUS

object-item-id (PK) (FK)
object-item-status-index (PK)
object-item-status-category-code
object-item-status-hostility-code
object-item-status-booby-trap-indicator-code
object-item-status-emission-control-code
reporting-data-id (FK)

MA
MA
MA
MA
OP
OP
MA

OBJECT-ITEM-TYPE object-item-id (PK) (FK)
object-type-id (PK) (FK)
object-item-type-index (PK)
reporting-data-id (FK)

MA
MA
MA
MA

OBJECT-TYPE object-type-id (PK)
object-type-category-code
object-type-dummy-indicator-code
object-type-name

MA
MA
MA
MA

ORGANISATION organisation-id (PK) (FK)
organisation-category-code
organisation-nickname-name

MA
MA
OP

ORGANISATION-
STATUS

organisation-status-id (PK) (FK)
object-item-status-index (PK) (FK)
organisation-status-operational-status-code
organisation-status-operational-status-qualifier-code
organisation-status-availability-code
organisation-status-command-and-control-role-code
organisation-status-commitment-status-code
organisation-status-fire-mode-code
organisation-status-nbc-dress-state-code
organisation-status-radiation-dose-code
organisation-status-readiness-code
organisation-status-readiness-duration
organisation-status-reinforcement-code
organisation-status-reserve-indicator-code
organisation-status-usage-status-code

MA
MA
MA
OP
OP
OP
OP
OP
OP
OP
OP
OP
OP
OP
OP

ORGANISATION-
TYPE

organisation-type-id (PK) (FK)
organisation-type-category-code
organisation-type-command-function-indicator-code
organisation-type-command-and-control-category-

code
organisation-type-description-text

MA
MA
MA
OP

OP

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 143

Entity Name Attribute Names Optionality
POINT point-id (PK) (FK)

point-category-code
MA
MA

REFERENCE reference-id (PK)
reference-description-text
reference-security-classification-code
reference-source-text
reference-transmittal-type-code

MA
OP
OP
OP
OP

REPORTING-DATA reporting-data-id (PK)
reporting-data-accuracy-code
reporting-data-category-code
reporting-data-counting-indicator-code
reporting-data-credibility-code
reporting-data-reliability-code
reporting-data-source-type-code
reporting-data-reporting-date
reporting-data-reporting-time
reporting-data-timing-category-code
reference-id (FK)
reporting-data-reporting-organisation-id (FK)

MA
OP
MA
OP
OP
OP
OP
MA
MA
MA
OP
MA

REPORTING-DATA-
ABSOLUTE-TIMING

reporting-data-absolute-timing-reporting-data-id (PK)
(FK)

reporting-data-absolute-timing-effective-start-date
reporting-data-absolute-timing-effective-start-time
reporting-data-absolute-timing-effective-end-date
reporting-data-absolute-timing-effective-end-time

MA

MA
OP
OP
OP

SURFACE surface-id (PK) (FK)
surface-category-code

MA
MA

UNIT unit-id (PK) (FK)
unit-formal-abbreviated-name

MA
MA

UNIT-TYPE unit-type-id (PK) (FK)
unit-type-category-code
unit-type-arm-category-code
unit-type-arm-specialisation-code
unit-type-supplementary-specialisation-code
unit-type-general-mobility-code
unit-type-qualifier-code
unit-type-size-code
unit-type-principal-equipment-type-id (FK)
unit-type-supported-military-organisation-type-id (FK)

MA
MA
MA
OP
OP
OP
OP
MA
OP
OP

VEHICLE-TYPE vehicle-type-id (PK) (FK)
vehicle-type-category-code

MA
MA

VESSEL-TYPE vessel-type-id (PK) (FK)
vessel-type-category-code
vessel-type-subcategory-code

MA
MA
OP

The following table shows the mandatory attributes from the table above that are not PKs.
Attributes with a list of codes that must be analyzed are marked in bold. The number of values is
indicated, and the values for some with only a few values allowed.

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 144 RTO-TR-IST-061

Entity Name Attribute Names Number of values
ABSOLUTE-POINT absolute-point-latitude-coordinate

absolute-point-longitude-coordinate

ACTION action-category-code 2 ACTEV
ACTTA

ACTION-EVENT action-event-category-code 323
AFFILIATION affiliation-category-code 6

Only use

geopolitical
code

AFFILIATION-
EXERCISE-GROUP

affiliation-exercise-group-name

AFFILIATION-
FUNCTIONAL-GROUP

affiliation-functional-group-code
affiliation-functional-group-name

3 CRIMIN
MULTIN
TERRST

AFFILIATION-
GEOPOLITICAL

affiliation-geopolitical-code 241

Use only
FXX,NL,GE,
PL,NO,SP
and NOS

AIRCRAFT-TYPE aircraft-type-category-code 8
AMMUNITION-TYPE ammunition-type-category-code 36
BRIDGE-TYPE bridge-type-design-type-code 16

CONSUMABLE-
MATERIEL-TYPE

consumable-materiel-type-category-code 19

CONTROL-FEATURE control-feature-category-code 2 NOS
ROUTE

CONTROL-FEATURE-
STATUS

control-feature-status-usage-status-code 2 ACTIVE
DEACTV

CONTROL-FEATURE-
TYPE

control-feature-type-category-code 262

EQUIPMENT-TYPE equipment-type-category-code 9 Only use
Aircraft,
Vessel, Vehicle

FACILITY facility-category-code 7
FACILITY-STATUS facility-status-category-code

facility-status-operational-status-code

2

6

MEDFST
NOS

FACILITY-TYPE facility-type-category-code 188

FEATURE feature-category-code 4 CF
GF
METFT
NOS

FEATURE-TYPE feature-type-category-code 4 CF
GF
METFTT
NOS

GEOGRAPHIC-
FEATURE-STATUS

geographic-feature-status-code 7

GEOGRAPHIC-
FEATURE-TYPE

geographic-feature-type-category-code 31

GOVERNMENT-
ORGANISATION-
TYPE

government-organisation-type-category-code

5 Only use
MILORG

HOLDING reporting-data-id (FK)
LINE-POINT line-point-sequence-quantity

line-point-point-id (FK)

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 145

Entity Name Attribute Names Number of values
LOCATION location-category-code 4 VL

LN (line)
PT (Point)
SURFAC

MATERIEL-STATUS materiel-status-category-code
materiel-status-operational-status-code

2
6

Only use NOS
MOPS
NKN
NOP
OPR
SOPS
TNOPS

MATERIEL-TYPE materiel-type-category-code 3 CM
EQ(Equipment)
NOS

MILITARY-OBSTACLE military-obstacle-category-code 2 MINE
NOS

MILITARY-
OBSTACLE-TYPE

military-obstacle-type-category-code 29

MILITARY-
ORGANISATION-
TYPE

military-organisation-type-category-code

military-organisation-type-service-code

5

15

Only use UNIT-
TYPE

ARMY
NAVY

OBJECT-ITEM object-item-category-code
object-item-name

6 FA
FE
MA (Material)
OR (Organis.)
PE
NKN

OBJECT-ITEM-
AFFILIATION

reporting-data-id (FK)

OBJECT-ITEM-
ASSOCIATION

object-item-association-category-code
action-task-id (FK)

94 See note 4.

OBJECT-ITEM-
ASSOCIATION-
STATUS

object-item-association-status-category-code
reporting-data-id (FK)

2 Only use
START

OBJECT-ITEM-
LOCATION

reporting-data-id (FK)

OBJECT-ITEM-
STATUS

object-item-status-category-code

object-item-status-hostility-code
reporting-data-id (FK)

6

14

OR

Assumed
Friend
Assumed

hostile
Friend
Hostile
Neutral
Pending

Unknown
OBJECT-ITEM-TYPE reporting-data-id (FK)

OBJECT-TYPE object-type-category-code

object-type-dummy-indicator-code
object-type-name

6

2

MA (Material)
OR (Organis.)

NO
YES

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 146 RTO-TR-IST-061

Entity Name Attribute Names Number of values
ORGANISATION organisation-category-code 3 CO

UN (Unit)
NOS

ORGANISATION-
STATUS

organisation-status-operational-status-code 6 MOPS
NKN
NOP
OPR
SOPS
TNOPS

ORGANISATION-
TYPE

organisation-type-category-code

organisation-type-command-function-

indicator-code

5

2

Only need
GVTORG
(Government)

NO
YES

POINT point-category-code 2 Only use ABS
REPORTING-DATA reporting-data-category-code

reporting-data-reporting-date
reporting-data-reporting-time
reporting-data-timing-category-code
reporting-data-reporting-organisation-id (FK)

6

3

Only need
Reported

Only use
RDABST

REPORTING-DATA-
ABSOLUTE-TIMING

reporting-data-absolute-timing-effective-start-date

SURFACE surface-category-code 7
UNIT unit-formal-abbreviated-name
UNIT-TYPE unit-type-category-code

unit-type-arm-category-code

unit-type-size-code

unit-type-arm-specialisation-code (OP)

5

35

28

(130)

Need: Combat
Combat

Service
Support

Combat
Support

Not known
See note 1.

See note 1.

See note 2.

See note 1.

VEHICLE-TYPE vehicle-type-category-code 34 Ambulance
Armoured
Armoured-

personnel-
carrier

General-
purpose

NKN
VESSEL-TYPE vessel-type-category-code 3 NKN

SUBSRF
SURFAC

 vessel-type-subcategory-code (OP) (62) NKN
See note 3.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 147

Note 1: We select a limited set of combinations (10-12) of unit-type-arm-category-code and unit-type-arm-specialisation-code to
be sure that every system can display the corresponding symbol.

unit-type-category-code unit-type-arm-category-
code

unit-type-arm-
specialisation-code

Not known Not known NULL
Combat Air defence NULL
Combat Anti armour NULL
Combat Armour NULL
Combat Aviation, rotary wing Medical evacuation aviation
Combat Aviation NULL
Combat Engineer Engineer, reconnaissance
Combat Infantry NULL
Combat Reconnaissance Cavalry
Combat Not otherwise specified NULL
Combat support Signal NULL
Combat support NBC NULL
Combat service support Maintenance NULL
Combat service support Supply NULL

Note 2: We select a set tailored to the scenario for unit-type-size-code:

Corps, Division, Brigade, Battalion, Company, Section, Platoon, Not otherwise specified.

Note 3: Not subsurface types. We select a limited set, including frigates, patrol vessel, merchant ships, fishing boats. And

additionally, Landing boat : LNDCRF

Note 4: Only two relations are remaining: between organisation and materiel, and between materiel and materiel.

• Relation between organisation (subject) and materiel (object) : Controls, Employs, Not known
• Relation between materiel and materiel : Not otherwise specified

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 148 RTO-TR-IST-061

Appendix 11: Evaluation of Compression Methods

A11.1 INTRODUCTION

This appendix summarizes evaluation methodology and performance data that have been collected during
tests of a few XML compression methods for the CWID’06 demonstrator.

A11.2 ASSUMPTIONS

We assume that we need to select a single compression/encoding scheme that would perform acceptably
well (in terms of compression ratio and compression/decompression speed) and could be integrated with
both Java and .NET, as both environments will be used in the demonstrator. This implies that either a
C/C++ implementation should be available (then, it is possible to create a Java wrapper using Java Native
Interface and a .NET wrapper, with Managed Extensions for C++) or that two separate, compatible
implementations must exist.

We decided not to take the ability of a tool to query/modify an compressed document into account; this
does not seem to be a real factor.

A11.3 COMPRESSION/ENCODING TECHNIQUES CONSIDERED

We have implemented a C#/.NET program that automatically tests compressors, computing performance
statistics (compression ratio, compression and decompression times). It is assumed that every compressor
inherits from the standard .NET System.IO.Stream class, and operates on memory buffers. Below we
presented a few methods we investigated. Some of them have been implemented and tested in the tool;
some others have been rejected for reasons listed below.

bzip2. This is available in the #ziplib library [SharpZip].

gzip. This is available in the #ziplib library [SharpZip].

XMill. XMill [XMill] is written in C++. We created a .NET wrapper using Managed Extensions for C++;
thus, it may be used by .NET applications as a .NET component. Unlike many other XML compressors
(see below), a newer version is not file-oriented and has an interface for compressing buffers. The original
implementation has been seriously improved – numerous memory bugs (memory leaks, uninitialized
memory reads) have been corrected. XMill’s implementation contains a number of “suspicious” choices –
e.g., it uses exceptions but does not use auto_ptr’s, memory allocation result is not always checked,
exception objects are dynamically created with new, etc.; thus, the implementation does not seem reliable
enough for a commercial implementation, although for the purposes of the demonstrator it has been
validated to be sufficiently stable (after corrections).

XMLppm. XMLppm [XMLppm] is written in C++. Unfortunately, the software is file-oriented (it can
only process files); moreover, it is in beta phase, it has some known bugs, and, to make things worse, there
are calls to exit() from within library functions. Correcting these issues could require substantial work.

XGrind. XGrind [XGrind] is written in C++. The implementation has the following limitations: it is
Linux(only)-targeted; it is mainly designed for file compression; it uses global variables (which excludes it
from use in a multithreaded environment! – like ours). Also, it has a limit that it only supports up to 256
distinct element and attribute names.

FastInfoset. This is Sun’s approach to Binary Web Services [FastInfoset]. There seems to be no .NET
implementation available.

BiM. BiM [BiM] is based on the MPEG-7 standard and has been designed and implemented by Siemens
and Expway. This is a commercial product (although an evaluation version is available). BiM generally

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 149

requires schemas for best performance (this limits flexibility). Implementations are available in Java and
C++.

Hessian Binary Web Service Protocol. Hessian [Hessian] is yet another approach to Binary WS.
Implementations available in Java and .NET. Not analyzed.

As one could see, we finally ended up in just three compressors, with just one being XML-specific, and
two being general-purpose compressors. A sad remark is that most research projects on XML compression
result in implementations that are quite difficult for a “serious” use – either because of bugs, limited
functionality or lack of support. This does not always mean that their implementations are “lame” – just
they have been built only in order to prove a particular method (a “proof-of-concept” approach)), not to
provide a useful component for larger software systems. Modifying them for our purposes looks like a
time-consuming task, and the real quality of the code (in terms of correct XML processing) is unknown.

A11.4 COMPARISON METHODOLOGY

The performance evaluation of the three tools have been performed in the following steps:

1. A tool has been implemented that automatically measures performance of compressors. It
compresses and then decompresses all files in a specified directory, then compares the result of
the cycle (i.e., whether a file after decompression is the same as the original file – which does
need to be true, e.g., as XMill may remove white spaces). For each file, compression or
decompression is repeated either a specified number of times (which is more convenient for
large files) or through some time (more convenient for small files).

2. A set of 50 XML files has been prepared (in fact, these were random files found on our hard
drive). As the comparison mainly targets SOAP messages, white spaces (indentations etc.) have
been removed. This choice may result in slightly different results than published elsewhere
(which probably assume typical XML documents).

The final file sizes were between 124 bytes and 4.187.786 bytes. The detailed sizes are given in
the next section.

Note that as we will have a set of typical files exchanged within the demonstrator, it will be easy
to repeat the test.

3. For all three compressors, three factors have been computed: the compression ratio, the average
compression time (in seconds), and the average decompression time (in seconds); these times
were computed for all files being (de)compressed at least 10 times, assuming that
(de)compression is repeated until it lasts at least 10 seconds.

4. Finally, some rough performance estimation has been computed for a tool run with every file
(de)compressed exactly 10 times. Despite some common additional activities were performed
(e.g., a file was opened and read), this is quite reasonable performance factor for all three
mechanisms.

Note that we compared implementations, not algorithms – for example, #ziplib is implemented entirely in
C#, while XMill is implemented in C++ (and available through a .NET wrapper, written in Managed
C++). (It is difficult to predict which approach should yield better performance – we just note the
difference.) Also, all algorithms were tested with default settings (if not stated otherwise).

A11.5 RESULTS

All test were performed on my Windows XP Professional box with Intel Pentium 4 2.8GHz and 1GB
memory. The .NET Framework version was 2.0.50727.

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 150 RTO-TR-IST-061

The following table correlates file numbers with sizes (as it can be observed, file numbers grow with size):

File number File size in bytes

1 124
2 232
3 423
4 745
5 795
6 823
7 836
8 852
9 857

10 896
11 899
12 946
13 987
14 1026
15 1586
16 1899
17 2017
18 2050
19 2498
20 3041
21 3046
22 3183
23 3833
24 4129
25 4760
26 4893
27 5800
28 5853
29 6037
30 6405
31 7825
32 8026
33 9060
34 10624
35 23034
36 39644
37 48239
38 79371
39 114250
40 242753
41 261772
42 341470
43 576028
44 814088
45 1054298
46 1172925
47 1479264
48 2385220
49 3978661
50 4187786

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 151

The following figures present measured performance factors: compression ratios (Figure A11.1),
compression times (Figure A11.2) and decompression times (Figure A11.3). bzip2 results are removed for
clarity.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

GZIP
XMILL/GZIP6

XMILL/PPMDI9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

GZIP
XMILL/GZIP6

XMILL/PPMDI9

Figure A11.1: Compression Ratios (raw data & smoothed profiles).

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 152 RTO-TR-IST-061

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 5 10 15 20 25 30 35 40

GZIP
XMILL/GZIP6

XMILL/PPMDI9

Figure A11.2: Compression Times.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 5 10 15 20 25 30 35 40

GZIP
XMILL/GZIP6

XMILL/PPMDI9

Figure A11.3: Decompression Times.

ANNEX A – DEMONSTRATOR SPECIFICATION

RTO-TR-IST-061 A - 153

Rough performance comparison – a run with each file (de)compressed 10 times – are presented below.

Compressor Compressor Options Run Time [s]

bzip2 152.6

gzip 18.4

XMill/gzip level 6 -z -on 44.0

XMill/PPMDI level 9 -P -9 -on 142.5

We once again repeat that there were some (modest) common activities performed in each run,
independently from a compressor type, so a real performance difference is bigger, and this is just a rough
factor. Nonetheless, it is clearly visible that gzip is definitely fastest.

A11.6 CONCLUSIONS
Based on the study, one can draw the following conclusions:

− Even for smallest documents, all the compressors are able to further shrink the size of the file
(with one exception – XMill/gzip for the smallest document). Thus, even if we decide to disable
compression for documents below a given size, this size may be really small, maybe below 0.5
kB (the exact value remains to be verified).

− XMIll’s results disappoint, at least for gzip/6, although we did not use additional, custom path
expressions, which should improve its results considerably (as other publications report). It
seems that with default settings, it does not work significantly better than gzip. On the other
hand, applying such expressions to dynamically generated XML documents seems questionable.

− XMill’s compression ratio improves with PPMDI/9, and becomes comparable to gzip,
especially for large documents, for which it outperforms gzip.

− We do not confirm good results for bzip (reported elsewhere) – it seems to perform similarly to
gzip (in terms of compression ratio) but is considerably slower.

Note, finally, that the test has been performed for a random set of XML documents. For messages
exchanged within the demonstrator, these numbers may change.

A11.7 REFERENCES
[1] [BiM] http://www.expway.com/bim-technology.php.

[2] [DErlay] D. Erlay, “Adding a zip filter to web services”, http://www.codeproject.com/cs/
webservices/WebServiceZipFilter.asp?df=100&forumid=78022&exp=0&select=1322883.

[3] [FastInfoset] http://java.sun.com/developer/technicalArticles/xml/fastinfoset/.

[4] [Hessian] http://www.caucho.com/hessian/.

[5] [SharpZip] http://www.icsharpcode.net/OpenSource/SharpZipLib/.

[6] [XGrind] http://sourceforge.net/projects/xgrind/.

[7] [XMill] http://sourceforge.net/projects/xmill.

[8] [XMLppm] http://xmlppm.sourceforge.net/.

http://www.expway.com/bim-technology.php
http://www.codeproject.com/cs/webservices/WebServiceZipFilter.asp?df=100&forumid=78022&exp=0&select=1322883
http://www.codeproject.com/cs/webservices/WebServiceZipFilter.asp?df=100&forumid=78022&exp=0&select=1322883
http://java.sun.com/developer/technicalArticles/xml/fastinfoset/
http://www.caucho.com/hessian/
http://www.icsharpcode.net/OpenSource/SharpZipLib/
http://sourceforge.net/projects/xgrind/
http://sourceforge.net/projects/xmill
http://xmlppm.sourceforge.net/

ANNEX A – DEMONSTRATOR SPECIFICATION

A - 154 RTO-TR-IST-061

	Annex A – DEMONSTRATOR SPECIFICATION
	A.1 INTRODUCTION
	A.2 DEMONSTRATOR ARCHITECTURE
	A.3 USE OF WEB SERVICES CORE STANDARDS
	A.3.1 SOAP
	A.3.2 WSDL
	A.3.3 Message Transport
	A.3.4 UDDI
	A.3.5 Binary XML/Compression Algorithm
	A.3.6 Publish/Subscribe Specifications

	A.4 PUBLISH/SUBSCRIBE SPECIFICATION
	A.4.1 Service Concepts and Features
	A.4.2 Service Architecture
	A.4.3 Publish/Subscribe Protocol
	A.4.4 Design Constraints, Guidelines and Technologies
	A.4.5 Implementation using Web Services
	A.4.6 Potential Asset-COI Relationships

	A.5 DATA AND SERVICE MODEL
	A.5.1 Data Model
	A.5.2 Service Model
	A.5.3 Topics Model

	A.6 SERVICE REGISTRY SPECIFICATIONS
	A.6.1 Architecture
	A.6.2 Use of the UDDI Data Model
	A.6.3 What Metadata to Publish about Business Entities
	A.6.4 What Metadata to Publish about Each Service
	A.6.5 Modelling of Topics in UDDI
	A.6.6 Security in UDDI
	A.6.7 Publishing Services into the Registry
	A.6.8 What Extra Search Functionality is Required
	A.6.9 Service Termination Policies
	A.6.10 Searching the Service Registry
	A.6.11 Data Structures in UDDI – Exemplified
	A.6.12 References

	A.7 SECURITY SPECIFICATION
	A.7.1 Security Architecture
	A.7.2 Security Functionality to be Demonstrated
	A.7.3 SOAP Message Security
	A.7.4 XML Security Label Definition
	A.7.5 Security Privileges
	A.7.6 Securing the Web Service Registry
	A.7.7 Securing the Web Service Provider
	A.7.8 The XML Security Domain Guard
	A.7.9 PKI
	A.7.10 Directory
	A.7.11 Demonstrator Security Policy Identifier
	A.7.12 References

	A.8 COMPRESSION TECHNIQUES
	A.8.1 Introduction
	A.8.2 Compression of a SOAP Message
	A.8.3 Compression Methods
	A.8.4 Configuration
	A.8.5 References

	A.9 OTHER ISSUES
	A.9.1 Time Zone

	Appendix 1: tModels
	A1.1 IDENTIFICATION STRING tMODEL
	A1.2 SERVICE TAXONOMY tMODEL
	A1.3 COVERAGEAREA tMODEL
	A1.4 LONGITUDE tMODEL
	A1.5 LATITUDE tMODEL
	A1.6 POSITION tMODEL
	A1.7 PUBLISHED tMODEL
	A1.8 VALID UNTIL tMODEL
	A1.9 ENTITY TYPE tMODEL
	A1.10 ASSET CATEGORIZATION tMODEL
	A1.11 topicCATEGORIZATION
	A1.12 topicSPACEREFERENCE
	A1.13 DISTINGUISHED NAME

	Appendix 2: Features in UDDI V3
	Appendix 3: PKI Profiles
	A3.1 SIGNATURE CERTIFICATES
	A3.1.1 Signature Certificate Introduction
	A3.1.2 Description of Tables
	A3.1.3 Support Classifications
	A3.1.4 Static Capability
	A3.1.5 Dynamic Capability

	A3.2 CERTIFICATE REVOCATION LISTS
	A3.2.1 CRL Introduction
	A3.2.2 Description of Tables
	A3.2.3 Support Classifications
	A3.2.4 Static Capability
	A3.2.5 Dynamic Capability

	Appendix 4: XML Security Label Syntax
	A4.1 INTRODUCTION
	A4.1.1 Versions, Namespaces and Identifiers

	A4.2 SECURITY LABEL OVERVIEW AND EXAMPLES
	A4.2.1 Detached Example
	A4.2.2 Enveloping Example
	A4.2.3 Enveloped Example
	A4.2.4 Core Security Label Syntax

	A4.3 ALGORITHMS
	A4.3.1 XPath Filtering

	A4.4 REFERENCES

	Appendix 5: XML Security Label Guidance and Matching Rules
	A5.1 XML LABEL GUIDANCE
	A5.1.1 LabeledObjectGroup
	A5.1.2 SecurityPolicyIdentifier
	A5.1.3 SecurityClassification
	A5.1.4 PrivacyMark
	A5.1.5 SecurityCategory

	A5.2 SECURITY LABEL MATCHING RULES

	Appendix 6: MTI Tracks Model
	A6.1 MTI TRACKS XML SCHEMA
	A6.2 MTI TRACKS ADDITIONAL INFORMATION

	Appendix 7: XML Schema for the UDDI Publishing API Extensions
	Appendix 8: Position Service Description
	A8.1 positionSERVICE.wsdl
	A8.2 position.xsd

	Appendix 9: The XML Schema of the LDAP Synchronization Component
	Appendix 10: MIP Elements Selection for RTG Demonstration
	A10.1 ATTRIBUTE SELECTION

	Appendix 11: Evaluation of Compression Methods
	A11.1 INTRODUCTION
	A11.2 ASSUMPTIONS
	A11.3 COMPRESSION/ENCODING TECHNIQUES CONSIDERED
	A11.4 COMPARISON METHODOLOGY
	A11.5 RESULTS
	A11.6 CONCLUSIONS
	A11.7 REFERENCES

