

RTO-TR-SAS-045 B - 1

NATO RTG SAS-045
on

Computer Based Decision Support Tool for
Helicopter Mission Planning in

Disaster Relief and Military Operations

Annex B – TECHNICAL REPORT 2:
OVERVIEW OF INFORMATION

TECHNOLOGIES

Hakan Çanlı
1st Lieutenant Turkish Air Force

Scientific Decision Support Branch
06100 Ankara, Turkey

ANNEX B – TECHNICAL REPORT 2:
OVERVIEW OF INFORMATION TECHNOLOGIES

B - 2 RTO-TR-SAS-045

B.1 INTRODUCTION

This document is prepared to fulfil the requirements of the Programme of Work (POW) of NATO
SAS-045 RTG on “Computer Based Decision Support Tool for Helicopter Mission Planning in Disaster
Relief and Military Operations”.

The POW dictates to provide an a-priori analysis of information technologies that are anticipated to
support the development of NATO SAS-045 project. As it is stated in the Terms of Reference (TOR) of
the afore-mentioned project, the main goal of the research is to provide the basis for developing a generic
and flexible decision support tool for effective management of helicopter missions by conducting the
problem analysis, investigating the concept of solutions and determining relevant technical requirements.

It is foreseen that different models, technologies and solution approaches will be utilized concurrently,
and integration and interfacing will pose itself as an important technical issue within the scope of
maintaining interoperability and standardization in NATO practices.

Thus, Work Item #2 of the POW states that during the Analysis Phase of the project technology surveys
should be carried out on modeling, computer (software engineering) and data collection technologies;
geographical information systems, digital maps, mission data compilation systems; model, data,
and knowledge management repositories in NATO nations. Then, the technology mapping and capability
matrix can be developed using the identified current needs and capability gaps.

In this document, it is intended to provide a broad overview that will guide any potential research dealing
with the design and development of a generic decision support tool within a similar NATO context,
not limited to helicopter operations.

B.2 INFORMATION SYSTEM DESIGN

The need for a faster and reliable decision support systems rises as a result of the rapid progress in both
business and technology. Although hardly noticed if it is working properly, the Database Management
Systems underpin all the activities of a decision support system by providing data storage and retrieval
technology. This document intends to present the key points to consider in design of the information
structure for decision support systems. Some DMBS commercial off-the-shelf systems are also presented.

An information system, with its very broad definition is a – computer – system that is used for the storage
and retrieval of any type of information – text, numerical, graphical, video, and sound. Before designing
an information system, an analysis is done to find out the requirements. For decision support systems,
a mathematical model should also be considered in the analysis phase. Then, in the design phase, focus is
directed towards the realization of the system to meet these requirements. Since mathematical model
development [FON03] and models in NATO nations [SMI03] are two other technology surveys within
analysis phase of NATO SAS-045 project, this document focuses only on the data management issues for
information systems.

B.2.1 Software Architecture
An information system is composed of the data and the software, which are principally managed
separately. Software architecture design is the focus of software engineering on decomposition of large
systems into layers and/or partitions [MAT01]. As described by Booch, Rumbaugh, and Jacobson,
“an architecture is the set of significant decisions about the organization of a software system, the
selection of the structural elements and their interfaces by which the system is composed, together with
their behavior as specified in the collaborations among those elements, the composition of these structural

ANNEX B – TECHNICAL REPORT 2:
OVERVIEW OF INFORMATION TECHNOLOGIES

RTO-TR-SAS-045 B - 3

and behavioral elements into progressively larger subsystems, and the architectural style that guides this
organization- these elements and their interfaces, their collaborations, and their composition” [BOO99].

An architectural design decision may be made from a broad-scoped or system perspective. Any decision
that could be made from a more narrowly-scoped, local perspective is not architectural [BRE02].

Figure B.1: Decision Scope and Impact [BRE02].

Three levels of architecture can be distinguished as shown in Figure B.2.

Figure B.2: Architecture Views [BRE02].

The three levels of architecture might further be decomposed into structural and behavioral views.
The structural view focuses on elements and their relations while behavioral view searches an answer to
the question “how does it work?” [BRE02].

ANNEX B – TECHNICAL REPORT 2:
OVERVIEW OF INFORMATION TECHNOLOGIES

B - 4 RTO-TR-SAS-045

Figure B.3: Architecture Views with Structure and Behaviour [BRE02].

B.2.2 Data Management
There are three major decisions for an information system designer:

1) Data management approach;

2) Data interaction strategy; and

3) DBMS paradigm.

B.2.2.1 Data Management Approaches

B.2.2.1.1 In-Memory Data

Since memory needs to be constantly powered or hardware persistent, in-memory data management
approach cannot support large systems. However, it’s suitable for small data sets as in Palm organizer,
Nintendo carts, etc.

B.2.2.1.2 Files
Files can be accessed sequentially (flat) or randomly (binary). As data size grows, data management and
access efficiency becomes a problem. Files are usually suitable for raw sensor data, debug dumps, etc.

B.2.2.1.3 Database Management System (DBMS)

Data Base Management System is a complex set of programs that control the organization, storage,
retrieval and security of data for users. Although they require administrative work, larger file sizes and

ANNEX B – TECHNICAL REPORT 2:
OVERVIEW OF INFORMATION TECHNOLOGIES

RTO-TR-SAS-045 B - 5

more CPU resources, compared to in-memory data and files, DBMSs provide excellent performance for
large data sets and flexibility in accessing data.

B.2.2.1.4 Data Management Approaches Comparison

Table B.1: Data Management Approaches Comparison [MAT01]

*
*

*
L

in
es

 in
se

rt
ed

 in
to

 th
e

or
ig

in
al

 ta
bl

e
by

 a
ut

ho
r

ANNEX B – TECHNICAL REPORT 2:
OVERVIEW OF INFORMATION TECHNOLOGIES

B - 6 RTO-TR-SAS-045

B.2.2.2 Data Interaction Strategy

Depending on the implementation requirements, information system designer may choose one or a group
of following data interaction strategies to communicate data between data management and the
application:

• Batch/Script;

• Embedded Queries (such as SQL/OQL);

• Database API;

• Stored Procedures;

• Generic OO Layer; and

• Metamodel-driven Interaction.

B.2.2.3 DBMS Paradigm

DBMSs are based on several different paradigms each of which is designed with a specific problem,
industry or set of functions in mind. This section surveys the main types of database management systems.

B.2.2.3.1 Hierarchical DBMS

The Hierarchical model is the oldest of the database models derived from the Information Management
Systems of the 1950s and 1960s. Data is organized in a series of records, which have a set of field values
attached to it. It collects all the instances of a specific record together as a record type. These record types
are analogous to the tables in the relational model, where the individual records are the rows in a table.
To create links between these record types, the hierarchical model uses “Parent-Child” relationships.
These are a one-to-many mapping between record types.

The records linked with parent-child relationships are organized as a single tree. From this aspect,
the hierarchical model is not able to cope with linking between branches or over multiple layers.
For example, we could have a tree representing the departments, sections and branches in the armed
forces; however we could not specify one branch working for more than one department such as Air Force
Operations Center’s relation with both Air Force Operations and General Staff Operations Center. To do
this we would have to create two instances of the AFOC, which could cause concurrency inaccuracies.

Figure B.4: Limitation to Linking Over Multiple Layers.

ANNEX B – TECHNICAL REPORT 2:
OVERVIEW OF INFORMATION TECHNOLOGIES

RTO-TR-SAS-045

Although it does not allow linking over multiple layers, the hierarchical model with its single tree is much
more structured than the relational model with improved throughput for transactions and simplicity of the
interface for users. The hierarchical model is no longer used as the basis for current commercially
produced systems; however, there are a large number of legacy installations that are likely to be phased
out over time. [CER03]

B.2.2.3.2 Network DBMS

The Network model introduced in 1970s is a contemporary version of the Relational Model, both in terms
of its age and its basic research done in the 1960s. Network Model represents the data in the form of a
network of records and sets, which are related to each other, forming a network of links. This model is
only used in legacy systems and is being phased out over time.

Records in a network database are sets of related data values equivalent to the rows in the relational
model. They store the name of the record type, the attributes associated with it and the format for these
attributes. Record Typesare set of records of the same type analogous to the tables in the relational model.
“Associated with” relationship may occur between various record types. This relationship doesn’t have a
direct counterpart in the relational model, but it is similar to a query statement, which joins two tables
together. This relationship makes the network model faster with certain queries at the cost of the flexibility
and adaptability of the relational model.

An example of “Associated with” relationship would be the relationship between a squadron and the pilots
in it. The network model uses a Bachman diagram to represent this relationship as shown below [CER03].

Figure B.5: “Associated with” Relat

The network model is not commonly used today to d
instances of it being used by companies as a part of a le

B.2.2.3.3 Relational DBMS (RDBMS)

B.2.2.3.3.1 RDBMS Structure

Relational database systems (RDBMS) based on Set T
concept of data structures and relational algebra by E
and relationships can be expressed between tables and d
“tuples”, and there is one tuple component for each attr

SQUADRON
S_Name Location ….

h
Associated wit
B - 7

ionship in a Bachman Diagram.

esign database systems; however, there are a few
gacy system [CER03].

heory and Predicate Logic have arisen out of the
. F. Codd. RDBMSs organize data within “tables”
ata elements. The rows of the tables are also called

ibute (column) in that table.

PILOT
P_Name AC_Type …..

ANNEX B – TECHNICAL REPORT 2:
OVERVIEW OF INFORMATION TECHNOLOGIES

B - 8 RTO-TR-SAS-045

Figure B.6: Relational Design for Squadron Pilots.

In this model, the physical implementation of the database is abstracted away from the user, and the
Structured Query Language (SQL) is used to extract and update data and conform as closely as possible
to the theoretical relational rules of normalization. Operations, which can be carried out on the data,
include “insert”, “query” and “delete” commands. Since SQL is the relational database standard,
the commands for most systems are almost exactly the same, with only some of the more complex
operations differing slightly [CER03, BIB03]. Following SQL command inserts a new pilot into the table
as shown in Figure B.7.

Insert Into Pilots Values (596874568867,’Hüseyin’,’Duman’,’Capt.’,’Falcon’);

Insert Into SquadronPilots Values (‘113. Fighter Sq.’,596874568867);

Figure B.7: Table Representation for Squadron Pilots.

ANNEX B – TECHNICAL REPORT 2:
OVERVIEW OF INFORMATION TECHNOLOGIES

RTO-TR-SAS-045 B - 9

Table B.2: Advantages and Disadvantages of the RDBMSs [BIB03]

Advantages Disadvantages

1) Being the most popular type of DBMS in use,
technical development effort ensures that advances
appear quickly and reliably.

2) Many third party tools are tuned to work with the
popular Relational DBMS via standards such as
Open Database Connectivity (ODBC).

3) It offers distributed database and distributed
processing options for large consortium libraries.

4) It includes extremely well developed management
tools and security with automatic data logging and
recovery.

5) Referential integrity ensures data consistency.

6) Transactional integrity features ensure that
incomplete transactions do not occur.

1) Since RDBMSs have to employ
many tables to conform absolutely to
various normalization rules, they
may be slow and resource hungry.

2) SQL does not provide an efficient
way to browse alphabetically
through an index. Thus some
systems cannot provide a simple title
A-Z browse.

B.2.2.3.3.2 RDBMS Connectivity

Application programmer can establish connection to a database management system through several
methods to access and execute operations over data. The programmer can use the proprietary
programming interfaces (API) provided with the DBMS or standards such as Microsoft’s Open Database
Connectivity Standard and ActiveX Data Objects (ADO) or Java Database Connectivity (JDBC).

The ODBC standard provides an open, non-proprietary definition – a low-level set of calls for applications
and DBMSs to exchange instructions and share data without knowing anything about each other.
Typically, custom ODBC middleware drivers must be developed to transform ODBC calls into vendor-
specific access requests and responses. ODBC is a low-level functional (non-object orientated) API for
accessing databases. ADO provides an object orientated layer on top of ODBC, or can even operate
independently of ODBC. The X/Open Group and ISO have made ODBC a standard, though there are
differences from this standard and the Microsoft implementation.

The ODBC interface defines: [OPE03]:

• A library of ODBC function calls that allow an application to be connected to a DBMS, to execute
SQL statements, and retrieve results.

• A standard way to connect and log on to a DBMS.

• A standardized representation for data types.

ANNEX B – TECHNICAL REPORT 2:
OVERVIEW OF INFORMATION TECHNOLOGIES

B - 10 RTO-TR-SAS-045

Figure B.8: ADO-ODBC Structure.

Java DataBase Connectivity on the other hand is the primary way of connecting to an SQL compatible
database using the Java programming language. It’s basically Java based counterpart of ODBC. JDBC
gives the programmer a series of objects to represent such database concepts as connections, queries and
result sets. Like ODBC, JDBC uses database drivers. Four types of connection have been defined for
JDBC as shown in Figure B.9 and Figure B.10:

• Type 1: JDBC – ODBC bridge;

• Type 2: Partial Java Driver;

• Type 3: Pure Java Driver for Middleware; and

• Type 4: Pure Java, Direct-to-DB Driver.

ANNEX B – TECHNICAL REPORT 2:
OVERVIEW OF INFORMATION TECHNOLOGIES

RTO-TR-SAS-045 B - 11

Type 2
Type 1

Figure B.9: JDBC Type-1/Type-2 Structure [SUN03].

Type 3
Type 4

Figure B.10: JDBC Type-3/Type-4 Structure [SUN03].

ANNEX B – TECHNICAL REPORT 2:
OVERVIEW OF INFORMATION TECHNOLOGIES

B - 12 RTO-TR-SAS-045

B.2.2.3.4 Object-Oriented DBMS (OODBMS)

B.2.2.3.4.1 Object-Oriented Paradigm

Object-orientation is an approach to problem solving which seeks to identity the relevant objects in the
problem domain. These objects are then defined and employed to solve the problem. James Rumbaugh,
Michael Blaha, William Premerlani, Frederick Eddy and William Lorensen defined the term “object-
oriented” as follows:

Superficially the term “object-oriented” means that we organize software as a collection of discrete objects
that incorporate both data structure and behavior. This is in contrast to conventional programming in
which data structures and behavior are only loosely connected [RUM91].

An “object” is the most fundamental concept in the object-oriented paradigm. It is a conceptual (logical or
physical) entity composed of attributes and methods. Attributes hold the data that determine the state of
the object, and methods determine the behavior of the object based on its current state. An object is
normally referred to by a name and has an “identity.” Attribute values of an object might change in time,
perhaps as a result of performing a behavior, but it would still be the same object [STE99]. A UML
(Unified Modeling Language) representation of object is shown in Figure B.11 [MUL97].

Figure B.11: UML Object Representation.

A “class” is an abstract representation for some particular type of object. Often described as a blueprint for
an object, it defines objects of that type. Objects are built from the class by a process named
“instantiation.” As a result, any object is an instance of a class. Figure B.12 shows the UML representation
of class. Different types of relationships are applicable between classes. An “association” relationship is a
semantic connection shown with a line between classes or objects as in Figure B.13 [MUL97].

Figure B.12: UML Class Representation.

ANNEX B – TECHNICAL REPORT 2:
OVERVIEW OF INFORMATION TECHNOLOGIES

RTO-TR-SAS-045 B - 13

Figure B.13: UML Association Relationship.

By default, an association expresses a weak coupling between abstractions. An “aggregation” is a special
type of association expressing a strong coupling. Aggregation indicates relationships like “part of,”
“composed of,” or “master and slave.” It is represented with a diamond. UML also defines even stronger
coupling, “composition,” meaning that when the owner object is deleted it results in the deletion of its
composite objects. Composition is represented with a filled diamond [MUL97].

Inheritance is a relation where one class has all the properties and methods of its parent and extends it
by including additional methods or variables. Classes are ordered within an inheritance hierarchy.
A “superclass” is an abstraction of its “subclasses.” The UML representation of an inheritance relation is
shown in Figure B.15 [MUL97].

Figure B.14: UML Aggregation and Composition Relationships.

Figure B.15: UML Inheritance Relationships.

ANNEX B – TECHNICAL REPORT 2:
OVERVIEW OF INFORMATION TECHNOLOGIES

B - 14 RTO-TR-SAS-045

Abstraction, encapsulation, inheritance, reuse, and emphasis on the object structure instead of the
procedural structure are themes well supported by the object-oriented paradigm. Rumbaugh, Blaha,
Premerlani, Eddy and Lorensen define “abstraction” as focusing on the essential, inherent aspects of an
entity and ignoring the accidental properties [RUM91]. Use of abstraction during analysis means
concentrating on application domain concepts and not making low-level design decisions. “Encapsulation”
(information hiding) is achieved by differentiating accessible and inaccessible properties of objects from
outside of the object. Details of an object can be changed while its interface remains the same.

The object-oriented paradigm promises improvement in productivity by being a natural match between
implementation and problem. It promotes reuse of objects and increases quality by reducing errors and
coupling. It provides better maintainability by encapsulation and ease of extensibility by simply adding
another object or feature to an existing object.

B.2.2.3.4.2 Object-Oriented Modeling Approaches and UML

Object-oriented modeling languages emerged in the 1970s and different approaches to object-oriented
analysis and design have been proposed; in the 1990s, more than 50 different object-oriented methods
were available. The confusion caused by different interpretations limited the progress of these methods.
Stronger versions of these methods began to appear by late 1990s, including OOSE (Object-Oriented
Software Engineering) by Ivar Jacobson, OMT (Object Modeling Technique) by Jim Rumbaugh, and
Grady Booch’s method. OOSE provided a use-case-oriented approach supporting requirements analysis
based on interactions between users and systems. OMT was especially expressive for analysis and
information systems while Booch’s method was particularly expressive for system partitioning.

The unification of Booch and Rumbaugh resulted in the release of a draft version 0.8 of UML in October
1995. In fall 1995, Jacobson joined the unification process [OMG01]. Table B.3 presents the previous
efforts that have influenced the unification [MUL97].

Table B.3: Origins of UML [MUL97]

Origin Element

Booch Categories and subsystems

Embley Singleton classes and composite objects

Fusion Operation descriptions, message numbering

Gamma et al. Frameworks, patterns and notes

Harel State charts

Jacobson Use Cases

Meyer Pre- and post-conditions

Odell Dynamic classification, emphasis on events

OMT Associations

Shlaer-Mellor Objects’ lifecycles

Wirfs-Brock Responsibilities and collaborations

ANNEX B – TECHNICAL REPORT 2:
OVERVIEW OF INFORMATION TECHNOLOGIES

RTO-TR-SAS-045 B - 15

The unified methodology is designed to provide guidance to the order of team activities, to direct the task
of individual developers and the team as a whole, to specify what artifacts should be developed, and to
offer criteria for monitoring and measuring a project’s products and activity. Jacobson, Booch and
Rumbaugh list the four goals of UML as follows [MUL97]:

1) To represent complete systems using object-oriented concepts.

2) To take into account the scaling issues.

3) To establish an explicit coupling between concepts and implementation.

4) To create a modeling language usable by both human and machines.

Figure B.16: UML History [VIN02].

The unified development process met the requirements of the software development community with a
generic process framework that can be specialized for a variety of software systems, application areas,
organizations, competence levels, and project sizes. The distinguishing aspects of UML are the ability to
provide a use-case driven, architecture centric, iterative, and incremental design process [JAC99].
With these advantages UML became a widely used standard in the software industry for modeling
software. Recently, OMT is about to finish the final specification of UML 2.0, which is the first major
revision to the standard since its inception in 1997. The new specification is designed to support a number

ANNEX B – TECHNICAL REPORT 2:
OVERVIEW OF INFORMATION TECHNOLOGIES

B - 16 RTO-TR-SAS-045

of model-driven development paradigms, including Model-Driven Architecture (MDA) as defined by the
Object Management Group (OMG).

B.2.2.3.4.3 OODBMS
The object-oriented model is one of the most recent database models based on the concept of storing and
retrieving objects, which are a collection of data items and the operations, which can be executed on them.
The first commercially available object oriented DBMS became available in the mid-1980s. By the early
1990s, there were a range of OODBMSs available from a variety of vendors.

Object-Oriented Database Technology is a search for a method to solve the problems by expressing
objects as relations. Some database application domains tend to inherently lend themselves to object-
oriented data modeling with large amounts of data, which needs to be stored and manipulated in ways
which relational systems were not designed to handle, such as Computer-aided Software Engineering
(CASE), Mechanical Computer-Aided Design (MCAD), Electronics Computer-Aided Design (ECAD),
Computer-Aided Manufacturing (CAM), Office Document Generation/Control Software, Graphics
Packages, Scientific/Medical Applications, Knowledge Base Applications, etc. [CAT91].

Although OODBMSs allow fast navigation through links between objects, flexible locking protocols,
rich type set, natural representation of objects, their theory and standards are immature. Relational model
is a solid data model mathematically expressible in terms of a relational algebra and tuple calculus based
on storing data in central repository for multiple applications to access and manipulate where Object-
Oriented model is on the other hand based on preserving the state of an application between execution
sessions and does not possess a common data model or theoretical framework.

Unlike the relational model, the OO model does not have a high level language like SQL. This gives the
programmer a low level control of the system where he/she can control how data is to be stored and
manipulated; however, it is much more difficult for third parties to produce add-on products.

Atkinson et al. published “The Object-Oriented Database System Manifesto” in 1989. This paper opens
the debate about the definition of OODBMSs and describes the main features and characteristics that a
system must have to qualify as an object-oriented database system [ATK89]. They emphasized the three
points characterizing the research at its current stage: (i) the lack of a common data model, (ii) the lack of
formal foundations, and (iii) strong experimental activity. To clarify the definition of object-oriented
database systems, Atkinson et al. proposed characteristics that such systems should possess in three
categories: mandatory, optional and open [ATK89].

B.2.2.3.4.4 OR Mapping
Object-relational mapping is the process of integrating relational models, which only store data and object-
oriented model where objects have identity, state, and behavior in addition to data. General concepts and
definite rules for object-relational mapping can be defined. Although O/R Mapping process has been
automated and there are many commercial tools available, the automatic mapping process may cause
errors during data conversion in case of a change in the object schema and it may also reduce the
performance of the system. The main problem with OR mapping is “impedance mismatch” meaning that
models may not match up precisely. In most cases, relational model is used for entire business – accessed
by different applications, where an object model is specially designed and optimized for one application.

Following are the issues to be considered for object-relational mapping:
• Implementing identity;
• Implementing domains; and
• Defining tables and relations.

ANNEX B – TECHNICAL REPORT 2:
OVERVIEW OF INFORMATION TECHNOLOGIES

RTO-TR-SAS-045 B - 17

B.2.2.3.4.4.1 Implementing Identity

There are two types of identity: Existence-based or value-based. In value-based identity, some attributes of
the object are combined to obtain a unique value. The designer should ensure the uniqueness of the
resulting value referring to the object. An example for this type of identity may be aircraft names.
For instance, F-16DFB1992126 value may mean that this aircraft is F-16, D version, with role of fighter-
bomber and 126th aircraft manufactured in 1992. Although it works well with RDBMSs or small file
applications, value-based identity is difficult to change since it may introduce interdependencies in the
application.

Existence-based identity depends on object identifiers (OID) generated by the system guaranteeing
uniqueness. The advantages of system-generated OIDs are their smaller and uniform size. However,
it may be difficult to generate an OID in a distributed database system. Existence-based identity is usually
preferred because of the independency it provides between object identifiers and application data so that
both can be changed without affecting each other.

B.2.2.3.4.4.2 Implementing Domains

Domain is a set of values, which can be represented in a field. Language data types are the main classes of
domains. The domain for a “byte” data type can be expressed as [0,255], meaning that a byte can store
values between and including 0 and 255. Since RDBMS data types are often less rich than language types,
methods for domain representation are required.

B.2.2.3.4.4.3 Defining Tables and Relations

In this section, examples for object relational mapping are provided for table and relation definitions
including one-to-one, one-to-many, many-to-many, and inheritance relations.

Pilot_OID Name AC_OID Pilot_OID AC_Name
1 Hakan 1 1 CN-235
2 Ramazan 2 2 F-16
3 Hüseyin 3 3 F-4
 2 3 F-16

Figure B.17: One-to-Many/One-to-One Relations.

ANNEX B – TECHNICAL REPORT 2:
OVERVIEW OF INFORMATION TECHNOLOGIES

B - 18 RTO-TR-SAS-045

Pilot_OID Name Tgt_OID Pilot_OID Tgt_Name
1 Hakan 1 1 AFB_1
2 Ramazan 2 1 AFB_2
3 Hüseyin 2 2 AFB_2
 3 3 RADAR_1

Figure B.18: Many-to-Many Relation-1.

Pilot_OID Name Pilot_OID Pilot_OID
1 Hakan 1 2
2 Ramazan 2 3
3 Hüseyin

Figure B.19: Many-to-Many Relation-2.

Pilot_OID Name Tgt_OID Pilot_OID Damage
1 Hakan 1 1 100%
2 Ramazan 2 1 50%
3 Hüseyin 2 2 50%
 3 3 75%

Figure B.20: Association Classes.

ANNEX B – TECHNICAL REPORT 2:
OVERVIEW OF INFORMATION TECHNOLOGIES

RTO-TR-SAS-045 B - 19

Person_OID Name Person_OID AC_Type Person_OID Speciality

1 Hakan 1 CN-235 3 Avionics

2 Ramazan 2 F-16

3 Mehmet

Figure B.21: Inheritance – Separating Superclass and Subclass Tables.

Person_OID Name AC_Type Person_OID Name Speciality

1 Hakan CN-235 3 Mehmet Avionics

2 Ramazan F-16

Figure B.22: Inheritance – Pushing Attributes Down to Subclasses.

Person_OID Name AC_Type Speciality

1 Hakan CN-235

2 Ramazan F-16

3 Mehmet Avionics

Figure B.23: Inheritance – Pushing Attributes Up to Superclass.

B.2.2.3.5 Object-Relational DBMS (ORDBMS)

The Object Relational Model is a relatively recent development based on the researches analyzing the
possibility of storing RDBMSs objects in the fields of a record. ORDBMSs are extended versions of
RDBMSs with the ability to explicitly define new types, to store complex type values and to allow
visibility into complex values. One of the reasons for ORDBMSs research was that relational model
couldn’t cope effectively with the new types of data that came with increasing use of object oriented
programming languages. These new types include audio, video and image files and user-defined types.
The second reason was heavy investment in RDBMS technology resulting in thousands of RDBMS tools
and RDBMS-skilled developers, and associated risks and cost of switching to OODBMS.

ANNEX B – TECHNICAL REPORT 2:
OVERVIEW OF INFORMATION TECHNOLOGIES

B - 20 RTO-TR-SAS-045

B.2.2.3.6 Other DBMS (ORDBMS)

Although relational and object-oriented models meet most of the business expectations, there are other
models designed to solve specific problems. These include but not limited to geo-spatial databases, real-
time databases, deductive databases and multimedia databases.

Real-time database systems are specially designed to satisfy application-timing constraints by
simultaneously enforcing data integrity constraints. Although a mature body of research has been done for
a decade, this research has almost exclusively been devoted to extending traditional transaction processing
issues such as resource scheduling policies, concurrency control, memory management, etc., to the real-
time environment.

Geospatial database systems manage data spatially referenced to the Earth. These DBMSs have to deal
with a great amount of data. Thus, as the user browse through a 2D or 3D map, geospatial database
management system should be able to keep up with the data access that has a special pattern. For more
information, refer to technology survey document on geospatial information systems [KAR03] prepared
within analysis phase of NATO SAS-045 project.

B.3 MAJOR DBMS PROVIDERS

B.3.1 RDBMS

Table B.4: RDBMS Providers

Provider Web Page

CINCOM www.cincom.com

Computer Associates International www.cai.com

IBM DB2 www.software.ibm.com

Informix www.informix.com

jBASE Int. www.jbase.com

Microsoft Corporation www.microsoft.com

MySQL (Open Source) www.mysql.com

Oracle www.oracle.com

PostgreSQL (Open Source) www.postgresql.org

Sybase www.sybase.com

Via Systems www.via.com

http://www.cincom.com/
http://www.cai.com/
http://www.software.ibm.com/
http://www.informix.com/
http://www.jbase.com/
http://www.microsoft.com/
http://www.mysql.com/
http://www.oracle.com/
http://www.postgresql.org/
http://www.sybase.com/
http://www.via.com/

ANNEX B – TECHNICAL REPORT 2:
OVERVIEW OF INFORMATION TECHNOLOGIES

RTO-TR-SAS-045 B - 21

B.3.2 OODBMS

Table B.5: OODBMS Providers

Provider Web Page

Computer Associates International www.cai.com

eXcelon Corporation www.exln.com

GemStone Systems www.gemstone.com

Objectivity Incorporated www.objectivity.com

POET Software Corporation www.poet.com

Progress Software www.objectstore.net

Versant Co. www.versant.com

B.3.3 ORDBMS

Table B.6: ORDBMS Providers

Provider Web Page

Cloudscape (JBMS) www.cloudscape.com

IBM (DB2 v.3) www.software.ibm.com/data/db2

Informix www.informix.com

Microsoft www.microsoft.com

Oracle (Oracle8) www.oracle.com

Sybase www.sybase.com

B.3.4 OODBMS Comparison
Table B.7 illustrates a sample comparison between vendors of OODBMSs. The criteria in this table may
be referred for further vendor selection analysis.

http://www.cai.com/
http://www.exln.com/
http://www.gemstone.com/
http://www.objectivity.com/
http://www.poet.com/
http://www.objectstore.net/
http://www.versant.com/
http://www.cloudscape.com/
http://www.software.ibm.com/data/db2
http://www.informix.com/
http://www.microsoft.com/
http://www.oracle.com/
http://www.sybase.com/

ANNEX B – TECHNICAL REPORT 2:
OVERVIEW OF INFORMATION TECHNOLOGIES

B - 22 RTO-TR-SAS-045

Table B.7: Major OODBMS Vendors Comparison [MAT01]

ANNEX B – TECHNICAL REPORT 2:
OVERVIEW OF INFORMATION TECHNOLOGIES

RTO-TR-SAS-045 B - 23

B.3.5 Automatic Object-Relational Mapping Tools

Table B.8: O/R Mapping Tools [MAT01]

PROVIDER SOFTWARE

2Link Consulting DbGen 1.0

Java Relational Binding 2.0 Ardent Software, Inc.

C++ Relational Binding 1.0

Objectmatter, Inc. Business Sight Framework 1.0

Persistence Software, Inc. PowerTier 2.1

POET Software, Inc. SQL Object Factory 5.1

Software Tree, Inc. JDX 1.0

Sun Microsystems JavaBlend 1.0

TopLink for Java 1.0 The Object People, Inc.

TopLink for Smalltalk 4.02

Watershed Technologies, Inc. Relational Object Framework 1.1

B.4 CONCLUSION

This document presented the survey on data management issues to be considered for NATO SAS-045
RTG on “Computer Based Decision Support Tool for Helicopter Mission Planning in Disaster Relief and
Military Operations.” The topics covered include data management approaches, data interaction strategies,
DBMS paradigms and DBMS providers. This research concludes that following criteria may be the basis
for designing data management architecture for NATO SAS-045:

Performance and Accessibility: Data management should address the time requirements of decision
support algorithm to promote its robustness. Thus desired system to be proposed by NATO SAS-045
should respond quickly to an emergency situation.

Interoperability with other NATO models and repositories: Based on another technology survey within
analysis phase of NATO SAS-045 [SMI03], most common data repositories in NATO organizations
including ICC & ACC (Integrated Command and Control & Air Command and Control System) and
ADAMS (Allied Deployment and Movement System), TOPFAS (Tool for Operational Planning, Force
Activation and Simulation) have been implemented as relational models. In order to generate practical and
flexible plans for missions supported by helicopters during a crisis situation, the decision support system
should have rapid access to reliable information in a standard format. The system should also be able to
distribute its results in a standard format to the related users.

Distribution and Crash Recovery: In disaster-relief operations it’s probable that some parts of an
information network might be damaged or inaccessible. The data management architecture to be proposed
should consider data distribution and crash recovery.

ANNEX B – TECHNICAL REPORT 2:
OVERVIEW OF INFORMATION TECHNOLOGIES

B - 24 RTO-TR-SAS-045

B.5 REFERENCES

[MAT01] Mathias, K.S., Class Notes, Air Force Institute of Technology Dayton/OH, 2001.

[BOO99] Booch, Rumbaugh and Jacobson, The UML Modeling Language User Guide, Addison-Wesley,
1999.

[BRE02] Bredemeyer Consulting White Paper, Software Architecture: Central Concerns, Key Decisions,
http://www.bredemeyer.com, 2002.

[CER03] Web page by Database Group of IT division of CERN (European Organisation for Nuclear
Research), http://wwwdb.web.cern.ch

[BIB03] Information Technology for Libraries, http://www.biblio-tech.com

[RUM91] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W., Object-Oriented
Modeling and Design, Prentice Hall, 1991, USA.

[STE99] Stevens, P. and Pooley, R., Using UML, Addison Wesley Longman, 1999, Massachusetts.

[MUL97] Muller, P.A., Instant UML, Wrox Press Ltd, 1997, UK.

[OMG01] Object Management Group (OMG), UML 1.4 Specification, 2001, Online Document,
http://www.omg.org/technology/documents/formal/uml.htm

[JAC99] Jacobson, I., Booch, G. and Rumbaugh, J., “The Unified Process,” IEEE Software, Vol. 16,
pp. 96-102, May/June ‘99, USA.

[CAT91] Catell, R., Object Data Management: Object-Oriented and Extended Relational Database
Systems, Addison-Wesley, 1991.

[ATK89] Atkinson, M., Bancilhon, F., DeWitt, D., Dittrich, K., Maier, D. and Zdonik, S., The Object-
Oriented Database System Manifesto, 1989.

[OPE03] Open Database Connectivity Standard, http://www.openlinksw.com

[CAS99] Casmira, J., A DBMS Comparison: RDBMS vs. ORDBMS vs. OODBMS, http://www.cs.
colorado.edu, 1999.

[FUS97] Fusel, M.L., Foundations of Object Relational Mapping, 1997.

[VIN02] Vinciguerra, R.L., www.vinci.org/uml/history.html, 2002.

[SUN03] Sun Microsystems web page, http://java.sun.com, 2003.

[SMI03] Smit, M.C., Summary of research on models, data and knowledge management repositories
and planning process in NATO organisations, Netherlands (Technology research document
prepared within analysis phase of NATO SAS-045 project.)

[FON03] Fontaine, M., Decision Support Tool Technologies, France (Technology research document
prepared within analysis phase of NATO SAS-045 project.)

[KAR03] Karasakal, O., Research Report on Geographical Information Systems, Digital Maps and
Automatic Digital Data Capture Decision Support Tool Technologies, Turkey (Technology
research document prepared within analysis phase of NATO SAS-045 project.)

http://www.bredemeyer.com/
http://wwwdb.web.cern.ch/
http://www.biblio-tech.com/
http://www.omg.org/technology/documents/formal/uml.htm
http://www.openlinksw.com/
http://www.cs.colorado.edu/
http://www.cs.colorado.edu/
www.vinci.org/uml/history.html
http://java.sun.com/

	Annex B – TECHNICAL REPORT 2: OVERVIEW OF INFORMATION TECHNOLOGIES
	B.1 INTRODUCTION
	B.2 INFORMATION SYSTEM DESIGN
	B.2.1 Software Architecture
	B.2.2 Data Management

	B.3 MAJOR DBMS PROVIDERS
	B.3.1 RDBMS
	B.3.2 OODBMS
	B.3.3 ORDBMS
	B.3.4 OODBMS Comparison
	B.3.5 Automatic Object-Relational Mapping Tools

	B.4 CONCLUSION
	B.5 REFERENCES

