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Chapter 4 – COMPLEXITY, AUTOMATION AND AUTONOMY 

4.1 INTRODUCTION 

This chapter addresses complexity, automation and autonomy. The advent of portable and powerful micro-
processors has allowed control systems to become more sophisticated and complex. Integrating multiple 
control systems together can yield highly automated systems that exhibit autonomous capabilities.  
An autonomous system can make decisions without human guidance, thus the long term goal of autonomous 
control is to impart human-like capabilities. To achieve human-like capabilities, an autonomous system may 
require the ability to learn from experiences. 

For both single vehicles and multiple vehicle systems, the design of the system needs a good grasp of the 
capability that is required to meet the desired performance requirements. For autonomous systems this 
requires a precise description of the environment in which the system must operate, together with the 
desired behaviours of the autonomous system. This in turn demands precise definition of the behaviour 
that the system is required to exhibit and under what conditions. Hence some time must be spent in 
defining autonomous behaviour and the complexity of both the environment and the complex system 
structure that is usually associated with autonomous systems. 

This chapter discusses the following important topics such as the complexity of systems, man-machine 
interfaces yielding higher levels of automation, autonomous vehicles and associated problems, and 
artificial intelligence. 

4.2 COMPLEXITY 

As the control systems and computers are becoming more and more sophisticated and complex,  
they require a high degree of reliability and maintainability and they must have fault accommodation in 
order to operate successfully over long periods of time. Reconfigurable controller has to achieve the 
following goals: 

1) Keep the system performance within acceptable boundaries during operation; 

2) Increase the performance of the process; and 

3) Achieve the goal for fault accommodation. 

Reconfigurable control(ler) is a critical technology to detect the fault and recover the functionality of the 
faulty system as same as that of the nominal system. Various methods are used for reconfigurable control 
to cover the requirements of different applications. The behavior of the reconfigurable control depends 
upon whether the approach is passive or active. Such control ideas have been implemented on a variety of 
military and commercial applications in last two decades to accommodate faults, for example on flight 
control systems on space technology in and on unmanned underwater vehicles. 

The steady increase in complexity of modern systems and infrastructures has placed strong demands on 
the requirements for control systems technologies. New advances in computing technology, 
microelectronics and intelligent devices (MEMS, self-validating sensor and architectures) have facilitated 
the development of powerful scientific and engineering methods in control. Almost all embedded systems 
now involve Control particularly at the high levels of embedding. Control technologies go significantly 
beyond the scope of traditional or classical solutions and now have the capabilities to address new 
challenges arising from large-scale networking, distributed service provision and sophisticated safety-
critical applications. Complex Systems emerge in many disciplines and domains and have many 
interpretations, implications and problems associated with them. In addition to real-time requirements 
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these systems have to be dependable which most often requires fault-tolerance. It is well known that the 
development of fault-tolerant real-time systems is a very challenging topic. 

An interesting characteristic of complexity is that higher levels of complexity tend to result in increased 
involvement of the human operator. Humans are difficult to model and their interaction with the plant, 
process or vehicle induces additional complexity and uncertainty. An interesting characteristic of 
complexity is that higher levels of complexity tend to result in increased involvement of the human 
operator. As systems increase in complexity this is becoming more important as more “pervasive” system 
tools become available. In recent years Automatic Control has been branching out in the directions of 
Software Engineering and Cognitive Science, giving rise to a discipline that can now be called “Embedded 
Cognitive Control”, as shown in the figure below. 

 

Figure 4.1: Embedded Cognitive Control Engineering Discipline. 

The “human self” can be represented much more in terms of reasoning, as a cognitive agent and as a 
“digital system” (as a part of the embedded computing structure of the system, etc.). The human self can 
even be regarded as an “executable” system. It is apparent that as systems increase in complexity these 
emerging issues and concepts involving the role of the human operator become more and more important. 
In some aspects humans will be dominant in the sense that there are some abilities that cannot be replaced 
by an automated system (e.g., in the analysis of many decision situations, where a comprehensive analysis 
of diversified elements is not possible to be formalized), want to keep decision-making sovereignty while 
using a decision support system for analysing the problem. On the other hand in some situations a 
dynamic and/or complexity of system may require automatic control. New activities in advanced control 
face the challenge of the complexity (characterized by size, structure, irreducible uncertainty, risk, 
diversified performance measures, etc.) of modern engineering and business systems and enterprises, 
spanning bio-technology, information technology, space and aeronautics, vehicle systems, process and 
manufacturing systems, life sciences, the economy, etc. 

Lui Sha, from the University of Illinois at Urbana-Champaign, in his article entitled:” Using Simplicity to 
Control Complexity. He has indicated his “call this approach using simplicity to control complexity”. 
Computational complexity is modeled as the number of steps to complete the computation. Likewise,  
we can view logical complexity as the number of steps to verify correctness. Logical complexity is a 
function of the number of cases (states) that the verification or testing process must handle. A program can 
have different logical and computational complexities. For example, compared to quick sort, bubble sort 
has lower logical complexity but higher computational complexity. The wisdom of “Keep it simple” is self 
evident. We know that simplicity leads to reliability, so why is keeping systems simple so difficult?  
One reason involves the pursuit of features and performance. Gaining higher performance and 
functionality requires that we push the technology envelope and stretch the limits of our understanding. 
Given the competition on features, functionality, and performance, the production and usage of complex 
software components (either custom or COTS) are unavoidable in most applications. Useful but 
unessential features cause most of the complexity. Avoiding complex software components is not practical 
in most applications. We need an approach that lets us safely exploit the features the applications provide. 
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The notion of using simplicity to control complexity ensures the critical properties. It provides us with a 
“safety net” that lets us safely exploit the features that complex software components offer. 

“Control of Complex Systems” by Karl J. Aström et. al has extensive analysis of complex systems.  
This book is an example of the types of approach that European researchers are using to tackle problems 
derived from systems’ complexity. It has grown out of activities in the Control of Complex Systems 
(COSY) research program the goals of which are to promote multi-disciplinary activity leading to a deeper 
understanding and further development of control technologies for complex systems and if possible,  
to develop the theory underlying such systems. The material in this book represents a selection of the 
results of the COSY program and is organised as a collection of essays of varying nature: surveys of 
essential areas, discussion of specific problems, case studies, and benchmark problems. A selection of the 
results of the Control of Complex Systems research program, COSY, and is organized as a collection of 
essays. Topics include modeling and complex physical systems, control design, learning control, satellite 
attitude control, and passivity-based fault identification and fault tolerance. 

4.3 MAN-MACHINE SYSTEMS 

The knowledge about human behavior in man-machine system design for the vehicle with high level of 
autonomy can be used for: 

• Design of operator’s station or other means in cabin of manned vehicles for monitoring of such 
vehicles. 

• Design of intelligent systems by use of knowledge on human operator behavior. 

These aspects of knowledge are discussed below. 

4.3.1 Supervisory Control in Man-Machine System 
The level of vehicle autonomy influences on role of a man in control of the vehicles. For the lowest level a 
human-operator acts as an active controller in man-machine system. 

In such manual control tasks human-operator each moment reacts actively on perceived stimulas (visual 
cues, vestibular cues, etc.) by deflecting a manipulator for transition of control signals to the vehicle.  
The brief analysis of pilot behavior in manual control and usage of this knowledge for integration of 
human-operator and vehicle is given in Chapter 2. The scheme characterized the human-operator activity 
in man-machine system for manual control is given on Figure 2.1. The increase of level of autonomy 
changes the role of human-operator. He acts in that case as a supervisor. There is supposed that for case of 
supervisory control the task is accomplished by automatically and human-operator ability is to check its 
fulfillment and to act as a monitor. It means that operator ability is the monitoring of the control process. 
His active participation will take place in case when the task (mission) will be changed or system 
performance (for example, accuracy) will approach or increase the requirements. In principle pilot can 
fulfill the manual control and monitoring tasks simultaneously. The pilot workload influences 
considerably on distribution of pilot activity between control and monitoring. The decrease of pilot 
workload index will lead to increase of human-operator activity as a monitor. In other case, he has to be 
more active control element in control loop. The Figure 4.2 reflects man-machine system in supervisory 
control. The main design problem in supervisory control is optimization of interfaces provided minimum 
human errors in recognition of appearance and/or development of accident or failures with minimum 
operator workload.  
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Figure 4.2: Man-Machine System in Supervisory Control. 

The solution of this problem requires to develop the models of operator as a supervisor, to define the 
workload indexes (WI), and to select the secondary task (for evaluation of WI). 

The model of human operator as a supervisor can be presented with help of the scheme shown on  
Figure 4.3. 

 

Figure 4.3: Human Operator Schematic. 

It consists of two elements: a linear estimator and a decision mechanism. As a linear estimator they use 
Kalman filter estimates the state variables )(tx  and the measurements )(ty  as well as the measurement 
error (residual) )(tε , where )()()( tytyt −=ε . The model takes into account the observation noise.  
For a number of instruments or metrics observed by operator the model takes into account the effect of 
sharing attention. If the operator observes more then one instrument his observation noise for each 
observation increases by a constant factor [Levison W.H., Elkind, J. and Ward J.,1971] and [Baron S., 
Kleinman D., Levison W., 1969]. The level of noise is inversely proportional to the fraction of attention 
that he spends monitoring that specific instrument. 

Decision making mechanism can be based by different way. One of them proposed in [Gai E., Curry R., 1975] 
is based on sequential analysis. The last one uses the hood-like ratio )(ml  as a decision function after  
m  observations. The two criteria levels, A and B are chosen, and the decision rule is given by the sequence: 

if Aml ≥)(  choose failure 

if Bml ≤)(  choose normal  

if B < )(ml < A  take another observation. 
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Where A and B are determined by desired probability of false alarm P(FA) and probability of miss P(MS) 
follows: 

A=1-P(MS)/P(FA) 

B=P(MS)/1-P(FA) 

One of the problems in definition of the best way for presentation of symbols and their location, 
indicator design, is the low sensitivity of the criteria used for solution of the problem (for example, 
detection time) to the workload index used in researches. As an example, the dependence of detected time 
as a function of normalized workload is shown on Figure 4.4. 

 

Figure 4.4: Detected Time vs. Normalized Workload. 

The research [Ephrath A.R., 1975] was dedicated to the estimation of detection time required to define a 
failure of one of the instruments. The research was fulfilled for manual control when pilot uses the 
observed information actively acting as controller and for automatic regime when pilot’s role was a 
monitor. The research was fulfilled for different pilot workload, associated with fulfillment of the 
secondary (no control) task. There is seen that in average the increase of normalized workload in its wide 
range causes the insignificant increase of detection time (up to 10% only). As for manual control the 
detection time was 50% higher in comparison with automatic control. 

This result leads to idea to use the manual control task as a secondary task for definition of detection time. 
It might be more sensitive test for solution of applied design problem. As an example the first order 
unstable plant 
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4.3.2 Adaptive and Intelligent Systems Grounding on Human Operator Experience as a 
Basis for System-Level Integration of Control 

4.3.2.1 Intelligent Control Systems as a Reflection of Experienced Human Pilot Skills 

The intelligent control systems are the systems having an ability to emulate human capabilities, such as 
planning, learning and adaptation. Intelligent control systems may be considered as a reflection of 
experienced human pilot (operator) skills in some artificial media. We would like to generate a control 
system, which will be comparable with a test pilot from the point of view of control skills.  

It is necessary to define what is meant above by intelligent, a term used here to refer to a specific class of 
problem solving. The technical committee on intelligent control of the IEEE Control Systems Society has 
defined the general characteristics of intelligent control systems as having an ability to emulate human 
capabilities, such as planning, learning and adaptation [Linkens, D.A. and others, 1996]. Learning and 
adaptation especially are essential characteristics of intelligent control systems and, while adaptation does 
not necessarily require a learning ability for systems to be able to cope with a wide variety of unexpected 
changes and environments, learning is invariably required. 

As it is shown below, intelligent control systems must allow solving of control tasks, which are too 
difficult or unsolvable by means of traditional control techniques. 

4.3.2.2 Control Problems for Advanced Manned and Unmanned Aircraft – General Description 

There are many tasks associated with flight control for modern and advanced aircraft including unmanned 
aerial vehicles (UAVs), which are not solved (or solved very unsatisfactorily) with traditional tools. It has 
been recognized in recent years, that realization of more flexible and effective control systems requires to 
combine other elements, such as logic, reasoning, heuristics etc., with the algorithmic techniques provided 
by conventional control theory, and such systems are known as intelligent control systems. 

Evidently uncompleted list of such tasks includes: flight control for agile and post-stall aircraft; flight 
control in complicated cases (influence of atmospheric turbulence, wind shear, flight and landing in 
complicated weather conditions, landing on aircraft carrier, refueling etc.); flight control with possibility 
of sharp or smooth changing of mathematical models for aircraft motion caused corresponding changes in 
vehicle shape and parameters (dropping internal and/or external stores, damages of aircraft, engines, 
avionics – sharp foreseen and/or unforeseen changes; maintenance of aircraft with taking into account 
smooth changes in its shape and parameters – icing of planes, wear of aircraft systems, expenditure of fuel 
from tanks etc.); and flight management and control in case of group of vehicles. These tasks can be 
characterized with such features as: 

• Wide range of conditions (flight modes, motion parameters, external disturbances etc.) needed to 
take into account; 

• Presence of many uncertainty factors belonging to various classes; 

• Essential nonlinearity of aircraft characteristics; 

• Essentially non-steady nature of processes realized with aircraft as controlled system; 

• Broad using of supercritical flight regimes to implement aircraft supermaneuverability; 

• Possibility of many abnormal modes caused by various kind of failures and damages in aircraft 
structure and equipment as well as with some external effects; 

• Unmanned advanced aircraft autonomy challenge; and 

• Necessity of collective operations for vehicles (cooperative actions, collision avoidance etc.) 
including a case of dissimilar vehicles. 
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4.3.2.3 Semi-Soft Computing as a Basis for Implementation of Intelligent Control Systems 

Research in the intelligent control field is based mainly on soft computing methods and tools as well as on 
extensions of these ones. It can be divided on three levels of the methods and tools needed to  
solve problems mentioned above [Brusov, and others, 1996, Tiumentsev Yu. V., 2002, 2004a, 2004b] 
(Figure 4.5): 

• Soft computing (SC) methods and tools: artificial neural networks (ANN), fuzzy logic (FL) 
systems, evolutionary techniques (genetic algorithms (GA), genetic programming etc.), 
uncertainty management techniques; 

• Extended soft computing (ESC) methods and tools: soft computing methods and tools together 
with knowledge-based systems (KBS) and multiple-agent technologies; and 

• Semi-soft computing methods and tools: extended soft computing methods and tools together with 
mathematical modeling (MM) techniques. 

 

Figure 4.5: Relationships between Soft Computing (SC), Extended  
Soft Computing (ESC) and Semi-Soft Computing (SSC). 

It should be emphasized that only presence of system elements based on soft and semi-soft computing 
techniques do not cause this system to be intelligent. After all, these elements can merely “replace” some 
other elements based on conventional techniques. For example, we can take a controller (a control channel 
in particular) and approximate its functional dependencies for gains in control law by means of some 
artificial neural network. After that the ANN-based representation can be used to compute gains related to 
some particular situation. A representation form is changed here but the essence of control law remains 
permanent. The controller becomes “ANN-based” but it still does not become “intelligent”. Therefore 
“neural control”, “fuzzy logic control”, “neuro-fuzzy logic control” and other similar terms are not 
synonyms at all for the “intelligent control” term. Some system will be “intelligent” only if it is capable to 
adapt and to learn (Figure 4.6). 
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Figure 4.6: Intelligent and Conventional Control  
Systems versus Soft and Semi-Soft Computing. 

It means intelligent systems can reconstruct effectively their behavior depending on current situation as 
well as accumulate solution experience for various tasks and use this experience to solve earlier unknown 
tasks. It’s quite another matter that a system named as “intelligent” can be hardly implemented without 
soft and semi-soft computing tools. So then realization of a control system basing on semi-soft 
information technology is most likely a necessary condition and is not a sufficient one. 

Based on soft and semi-soft computing, intelligent flight control are directed to reply the demands solving 
such main problems as: enhance the mission capability of aircraft; improve aircraft performance by 
learning from experience; make aircraft less dependent on proper human actions for mission completion; 
increase flight reliability and safety. 

4.3.2.4 Adaptive and Intelligent Systems as a Basis for System-Level Integration of Control 

4.3.2.4.1 Adaptation in Controlled Systems 
A need for adaptation and adaptive systems arises as a rule in case of multiple interconnected task solved 
under uncertainty conditions and severe resource constraints. 

Adaptive systems play very important role as a part of all kinds of complex systems especially air vehicles 
both piloted and unmanned as well as vehicles for space, land, and sea domains. Also intelligent systems 
demonstrate growing significance in recent years.  

Adaptive systems are thought in some broad sense namely as systems which are capable to modify their 
behavior according to varying conditions of their existence (environment, goals etc.). In other words adaptive 
system is a system, which has some mechanisms providing a possibility to live and to act in conditions of 
various and numerous uncertainties. One of most important mechanisms of this kind is intelligence, although 
it is not a unique one. 

Four kinds (hierarchical levels) of adaptation can be distinguished: 
• Parametrical adaptation (adjustment, self-adjustment); 
• Structural adaptation (reconfiguration and/or restructuring); 
• Object adaptation (correction of system composition); and 
• Goal adaptation (adjustment of demands). 
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4.3.2.4.2 Parametrical Aadaptation  

Is supported with variation of control system adjustment parameters, for example, controller gains. 

4.3.2.4.3 Structural Adaptation 

A required versatility for a controlled system not always can be reached only with varying values of 
control system parameters. Next hierarchical level for adaptive systems are systems, which are capable for 
structural adaptation, i.e. for a modification of the system structure (it includes a set of control system 
components as well as links between these components) in regard to changing situation and goal. Simplest 
case is a control system equipped with a set of alternative versions of control laws. Only one of the 
versions operates at some particular instant. 

4.3.2.4.4 Object Adaptation 

A case is quite possible when no variation of control system structure and parameters exists to satisfy 
goals of the controlled system. It is quite natural because of potentialities are restricted for any system;  
the potentialities are constrained with the system “structure”. If such a case arises then we can involve 
next adaptation level, i.e. object adaptation. 

The principal idea of this adaptation level consists in solving of a required task by means of a set (group, 
constellation, swarm) of interacting systems instead of some separate controlled system as it was for two 
previous cases. 

The essence of this approach can be illustrated for a task of intercept of aerial targets, including multiple 
ones. If airspace area and number of targets are relatively small then the task can be solved often with a 
single interceptor equipped with missile weapon and multi-channel system for finding and tracking of 
targets. If these conditions are not satisfied then capability of sole aircraft is not adequate to the task.  
In that case we can form some heterogeneous group of systems intended to solve cooperatively the mutual 
task. Such group can include vehicles of several types, ground-based equipment and so on. 

4.3.2.4.5 Goal Adaptation 

If object adaptation level is not adequate to the task similarly two previous levels, i.e. the level does not 
provide achievement of the goal, it is quite possible the stated goal is not achievable at all. We can change 
control goal to make it achievable. 

The essence of this adaptation level can be illustrated in the following way. Let a task be surveying of 
particular object for some self-propelled vehicle delivered onto a celestial body. It can be revealed that 
solving of the task demands too many resources. This circumstance impends to defeat the plans of the 
expedition. If that’s the case, the system can replace one goal with other following some general purposes 
(for example providing highest possible extraction of knowledge about the celestial body). The system can 
search for that an object “similar” to excluded one or to refuse this element of the exploration plan at all 
and to switch over to other plan elements. 

4.3.2.4.6 Implementation Basis for Adaptive and Intelligent Systems 

There are some advanced research and engineering areas associated with various sorts of adaptive and 
intelligent systems. As it was mentioned above list of these areas includes first of all soft computing 
technologies which combine into one such approaches as artificial neural networks, fuzzy systems and 
evolutionary techniques (genetic algorithms, genetic programming etc.). If we add knowledge-based 
systems to the list then we get extended soft computing. The addition of numerical simulation techniques 
to the extended soft computing leads to semi-soft computing. 
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During past 12–15 years methods and tools involved in soft computing, extended soft computing and semi-
soft computing have been developed very intensively. Many interesting results have been obtained and 
accepted [Samarin, A.I., 2005], [Brusov, V.S., and others, 2004], [Stengel, R.F., 1993], [Suykens, J.A.K., 
and others, 1996], [Sontag, E., 1993], [RayChaudhuri, T., and others, 1995], [Ronco, E., and others, 1997], 
[Haykin, S., 1994], [Berthold, M., and others, 2003], [Michalewicz, Z., 2001], [Domany, J.L., and others, 
1992], [Piegat, A., 2001], [Pal, S.K., and others, 2003], Polkowsky, L., and others, 2000]. Among these 
results we have those related to all aspects of management and control problems for complex systems: 
observation, sensor fusion, estimation, control, guidance, navigation, mission planning, situation assessment, 
decision making and so on.  

The results obtained allow to assert that extended soft computing and semi-soft computing techniques 
provide possibilities to solve management and control problems with conditions unacceptable for 
traditional control theory methods, for example, for a case with large abrupt change of controlled system 
configuration. 

These possibilities seem to be very important for piloted vehicles as well as for unmanned vehicles, 
especially to solve problem of system-level integration of control. Such possibilities could be helpful for 
many subjects and efforts including integration of control for both stability and maneuvering, integrated 
flight and fire control, integrated flight and propulsion control, automatic ground collision avoidance, 
swarms of unmanned vehicles, cooperative actions of dissimilar vehicles, safe mixing of manned and 
unmanned vehicles, automated mission performance of unmanned vehicles, automatic air collision 
avoidance and many others. 

As it was mentioned already it hardly makes sense to search some “miracle cure”, which is some kind of 
information technology (IT) alternative with respect to the traditional imperative-kind IT, to overcome 
revealed obstacles. Each IT picked up from the long list of modern traditional and advanced information 
technologies has both virtues and shortcomings. However as experience demonstrates capability of any 
single IT is not sufficient to solve all the problems arising during development and maintenance of 
complex systems especially adaptive and intelligent ones. It could be more productive to combine various 
information technologies for the purpose of using their strong features and to compensate mutually their 
inherent shortcomings. Based on these reasons it is not rational also to oppose traditional information 
technologies and advanced ones as well as some advanced technology to each other. 

We have to work for synthesis of concepts, techniques and tools consisted in these information 
technologies. It is the foundation that allows to solve the problems mentioned in previous sections.  
The most important goal of such synthesis is to define some kind of sufficiently general scheme that will 
be called as semi-soft computation (SSC) model. This model must allow to obtain partial (special-kind) 
models for various branches of the SSC namely for artificial neural networks (ANN), fuzzy logic (FL), 
genetic algorithm (GA), knowledge-based system (KBS), multiagent system (MA) as well as conventional 
mathematical modeling (MM) by putting into consideration appropriate requirements and conditions. 

Let us outline an approach to realization of the semi-soft computation model. 

One of the key elements of the SSC approach is an idea of neural network as a special kind composition of 
mappings and, on the other hand, as a dynamical system what is especially important for feedback neural 
networks. Such concept makes possible to reveal deep relationships between artificial neural nets and 
other fields of the SSC as well as their interrelations with conventional mathematical modelling. Similar 
approach is proved to be effective in respect of other SSC parts namely FL, GA, MA and KBS.  
Most generally the semi-soft computation model can be interpret as a composition of some special-kind 
mappings having either static (for instance perceptron-like feedforward networks) or dynamic  
(for example recurrent neural networks) nature. This model can be reduced to certain “pure” model based 
solely on the FL, GA, KBS, MA, MM concepts or to some “truncated” hybrid model (e.g. ANN+FL, 
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GA+ANN, ANN+KBS, GA+MA etc.) applying corresponding conditions. Such kind of representation for 
the SSC model opens up possibilities to rigorous mathematical analysis of the model and its various 
specialized versions as well as to define appropriate theoretical foundations for the SSC. 

One exists however another aspect of the discussed problem. A computing experiment is needed to 
evaluate efficiency and capability for approaches and techniques offered. Therefore it is quite important to 
represent the SSC model not only keeping its mathematical analysis in mind but also taking into account 
peculiarities of its computing implementation. It seems very promising to accomplish this purpose by 
using an extended semiotic model which is the second key element of the SSC approach. This model is 
based on a generalization of the semiotic model concept suggested by Dmitry Pospelov in [Pospelov, 
D.A., 1986]. The generalization is accomplished as a result of “composition-style” semiotic model 
reformulation corresponding to the SSC approach. 

A value of suggested theoretical (formal) models will be not so much without appropriate procedures 
which allow to reassert various kinds of application problems in terms of the SSC. In this connection the 
third key element of the SSC approach has to be a development of relevant tools ensuring the reassertion. 

The fourth key element of the SSC approach consists in development of suitable problem solving 
techniques. These techniques are based on concepts and tools of the SSC branches (ANN, FL, GA, KBS, 
MA and MM) transformed to keep the SSC-style of model representation, i.e. using special-kind 
composition of mappings plus extended semiotic model. 

Available results demonstrate very deep interconnections between such semi-soft computing areas as 
ANN and MM, ANN and FL, ANN and MA, FL and KBS, FL and GA, ANN and GA, KBS and 
conventional imperative technologies etc. Therefore one might conclude that it is very important to reveal, 
study and develop such kind of relationships because this approach promises to integrate really 
achievements from various SSC fields into comprehensive whole system. Besides a possibility emerges to 
formulate corresponding methodological principles and to derive suitable theoretical foundations for the 
SSC. These results are quite needed to build an information technology based on the SSC concepts and 
models. This technology, in turn, makes possible to increase considerably a level of complexity for 
application problems, which are available to solve them effectively. 

4.3.2.4.7 Multiagent Architecture for Adaptive and Intelligent Systems 

Adaptive and intelligent systems are very complicated ones. Complexity of these systems prevents their 
effective implementation for useful applications by means of conventional software architectures based on 
pure imperative information technologies. There is an alternative way to implement adaptive and 
intelligent systems involving multiagent models and corresponding multiagent systems. 

The multiagent system is a system consisting of numerous autonomous agent modules interacting with an 
environment (Figure 4.7) and having such properties as: 

• Each agent possesses an autonomy; 

• There is no centralized control for agents; 

• Data sources and data access are decentralized; and 

• Agents operate in asynchronous mode. 
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Figure 4.7: Generalized Structure of Autonomous Agent and its Interaction with Environment. 

The multiagent model is spreading now more and more widely including complex system development 
processes. Conventional approach to solve the complex system development problem is based on 
representation of the system as some subsystem hierarchy with subsystems rigorously subordinate to each 
other as well as with explicit structurization of all interconnections and interactions between subsystems.  

The new approach introduces a concept of autonomous system called agent instead of the subsystem 
concept. The agent has a high autonomy degree and it is independent of other agents. The rigorous set of 
relations for conventional-style model is replaced with a set of rules (protocols) defining interactions 
between agents. Besides some set of procedures is usually introduced to allow agent interactions if we are 
needed cooperative behavior for the agents solving certain common problem. This approach ensures to 
reduce considerably complexity and expenditures for the systems developed including adaptive and 
intelligent ones. Complexity of interactions between parts of the systems can be also reduced significantly. 
Therefore a true possibility appears to create really useful application systems. 

Two examples of multiagent architectures are shown in Figure 4.8: multiagent model based on direct 
interaction with the environment and without any coordination between agents (Figure 4.8a); and multiagent 
model involving agent cooperation via a blackboard (Figure 4.8b). 

 

Figure 4.8a: Multiagent Architectures Based on Direct Interaction With  
the Environment and Without any Coordination Between Agents. 
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Figure 4.8b: Multiagent Architecture Involving Agent Cooperation via Blackboard. 

4.3.2.4.8 Intelligent Autonomous Vehicle as a Typical Semi-Soft Computing Application Example 

There are developed and widely used manual control and automatic control techniques as well as 
automated control techniques combining manual and automatic ones. Development of advanced piloted 
vehicles as well as highly autonomous unmanned aerial vehicles demands some new ways to solve 
automatic and automated control problems with the regard conditions listed above. 

Grounding on soft and semi-soft computing techniques we can solve problems associated with highly 
autonomous vehicles including a case of intelligent autonomous vehicles (IAV). The IAV are systems 
which are capable: 

• To reach specified goals within highly dynamical environment taking into account various and 
numerous uncertainties; 

• To modify specified goals and to generate new goals and goal sets basing on some motivations; 

• To extract (to mine) a new knowledge, to accumulate and generalize experience in solving of 
diverse problems, to learn basing on the experience, to modify system behavior basing on the new 
knowledge and experience; 

• To adapt to problems which are needed to solve including some problems not presented at the 
original system design; and 

• To form “collectives” (“communities”) made up from IAVs directed to cooperative solving of 
some common complex problem.  

An activity of IAV within some environment can be divided into three main parts: 

• Perception of a current situation (situation = external-situation + internal-situation), i.e. revelation 
of a challenge – sensor functions; 

• Producing of a system reaction (“system’s reply”) for the current or predicted situation (kinds of 
possible reactions are system state evolution, reconfiguration, restructuring, adaptation of goals, 
unsupervised learning, self-organization etc.) – decision making functions; and 

• Implementation of reaction produced for the current or predicted situation – effector functions. 

A capability to learn and to accumulate (and to generalize) experience is provided for a controlled system 
a very high adaptability level in regard to variations in activity conditions. 
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In particular, a possibility arises to solve such problems as: 

1) System-level integration of control (one-vehicle-level) for piloted and unmanned air vehicles: 
• Integration of control for both stability and maneuverability; 

• Integrated flight and propulsion control; 

• Integrated flight and fire control; 

• Automatic ground collision avoidance; 

• Reconfiguration and restructuring of control as a reaction on large abrupt changes of 
controlled system configuration; 

• Structure adaptive and intelligent control (smart materials and structures, adaptive structures); 

• High-autonomous intelligent vehicles; and 

• … many others. 

2) System-level integration of control (multiple-vehicles-level) for piloted and unmanned air 
vehicles: 

• Automatic air collision avoidance; 

• Cooperative actions of dissimilar vehicles; 

• Safe mixing of manned and unmanned vehicles; 

• Tasks for communities of high-autonomous intelligent vehicles; 

• Swarms of unmanned vehicles; and 

• … many others. 

4.3.2.5 Intelligent Control Techniques Based on Human Operator Experience 

Let us consider in more details the second element of the IAV activity structure because of key role of the 
decision-making (control) functions. 

There are many ways to solve the problem. One of these ways is based on using of rich control experience 
accumulated in piloted aviation. 

There are three ways to generate intelligent control laws needed to solve tasks indicated above: 

• “Mimic” approach based on using of some neural or fuzzy-neural network or some ensemble of 
networks to imitate control actions produced by human pilot (operator); this approach essentially 
uses experience accumulated by pilots to generate control laws implemented with automatic 
systems; the pilot experience needed for “mimic” approach realization can be revealed by using of 
flight simulators; 

• “Formal” approach based on learning of some neural or fuzzy-neural network according to certain 
set of indices describing required behavior of controlled system; this approach do not use any 
pilot’s experience at all; and 

• “Combined” approach which merges “mimic” and “formal” approaches; in accordance with this 
approach some controller is constructed and learned at the beginning by means of “formal” 
approach tools, then such controller is refined using “mimic” approach tools using flight simulator 
and knowledge base containing pilot experience. 
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A human operator experience and skills can be used in the context of mimic and combined approaches by 
means one of such two ways as: 

• Imitation of operator’s behavior for specified conditions in solving some control problems; and 

• Synthesis of a control law implementing human operator’s experience and skills by means of 
approximation of dynamical model, which describes operator’s activity in solving some control 
problems. 

Implementation of mimic or combined approach causes some problems. The problems arise as a result of 
necessity to generate an approximate representation of human operator as a dynamical system. 

The human operator as a modeled object is characterized with such peculiarities as: 

1) Operator’s model is generally very complicated, nonsteady and nonlinear especially for cases of 
multi-channel control tasks, influence of complex external impacts and disturbances, control tasks 
in the event that dynamic of controlled object changes in sharp and unpredictable manner  
(for example because of structural damages and equipment failures of controlled object). 

2) Operator’s model depends essentially on a task which needed to be solved. There are many of 
such tasks in the case of complex multiple-mode controlled object. Accordingly, a lot of different 
models are needed to describe appropriately human operator activity as a whole. 

Thus it is necessary to solve approximation problem for dynamical systems realizing complex and 
multiple-variant behavior. 

Suppose a considered dynamical system realizes a transformation (mapping) F of input signals x into 
output signals y. It is necessary to find an approximate representation for F such that a behavior of the 
dynamical system with mapping F would be “similar” (in some predefined sense) to a behavior of a source 
system, i.e. some system with a human operator as a controller. 

Mathematically and computationally this problem is rather difficult. 

Let us assume for the sake of definiteness that inputs x and outputs y are vectors with elements, which belong to 
one of two spaces, R and C[a,b]: R is the space of real numbers and C[a,b] is a space of real-valued continuous 
functions on the [a,b] interval, where a, b ∈ R. 

Problems of approximate representation for mathematical objects like F can be divided into four types 
depending on a kind of inputs x and outputs y: 

1) Problems with x ∈ R and y ∈ R; they are traditional approximation problems for some function F. 

2) Problems with x ∈ C[a,b] and y ∈ R ; they are approximation problems for some functional F 
defined on functions x ∈ C[a,b] and possessing real number values y ∈ R. 

3) Problems with x ∈ R and y ∈ C[a,b] ; they are approximation problems for some differential 
operator F, which depends on real-valued parameters x ∈ R and possessing function values  
y ∈ C[a,b]. 

4) Problems with x ∈ C[a,b] and y ∈ C[a,b]; they are approximation problems for some integral 
operator F defined on functions x ∈ C[a,b] and possessing its function values y ∈ C[a,b]. 

First type of problems is traditional approximation problems for functions. A vast majority of works 
associated with approximation problems for mathematical objects including neural network based 
investigations is given up to such kind of problems. 
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Second and third types of problems are some problems related to approximation for systems of differential 
equations. There are traditional ways to solve these problems (difference schemes, functional expansions 
etc.) as well as non-traditional ways based on using of artificial neural networks, for example. However 
quantity of papers realizing non-traditional approaches to the problem is relatively small now. 

Fourth type of problems is certain problems associated with approximation of integral equations. The state 
of things in this area is about the same as for the second and third type problems. 

Approximation problems related to dynamical systems like human operator concern to the second and 
third type problems mentioned above. Conventional (traditional) techniques to solve these problems are 
hardly applicable because of their inconvenience, inflexibility as well as large requirements in 
computational resources. Techniques based on artificial neural networks are more preferable here.  
They allow handling considered problems. 

Neural network based implementation of intelligent control laws by means of approximation of 
appropriate dynamical models causes some problems: 

1) There are many control tasks realized by human operator for sufficiently complex controlled 
object. It would be ineffective to generate a separate neural network for each individual task, 
especially for a case of expandable list of tasks. It will be better to use a single network or a 
system of interconnected and interacted neural networks instead of a set of individual networks. 

2) An additional on-line learning can be required in many cases, for example if dynamic of 
controlled object changes in some sharp and unpredictable manner. Under the circumstances arise 
very hard limitations on operating speed of adaptation mechanisms. 

There are two ways leading to solution of these two problems: 

• Neural networks with a dynamical preliminary adjustment; and 

• Ensembles of neural networks. 

Neural networks with a dynamical preliminary adjustment are directed to realization of complex and very 
complex implicit functional dependencies. These networks include dynamically adjustable work elements 
(neurons) as well as so-called interneurons, which influence on tune parameters of the work neurons 
depending on values of input network signals and it possibly subject also to values of some additional 
parameters. The network is capable to absorb multiple models simultaneously by means of combinatorial 
interneuron inhibition process. The interneurons may receive their input signals from some other network 
solving a classification problem. A solution of this problem represents a name (or a number) of the model, 
which is adequate to current work conditions. These networks can be learned additionally to react on an 
expansion of the associated task list. Previous experience of the network is preserved and enlarged,  
i.e. additional training do not destruct its preceding capabilities. 

Some different approach is ensembles of neural networks. An ensemble of neural network is used for 
implementation of required task set according to this approach. Each of these networks associates with 
some tasks from the task set. Two architecture version of the ensemble is possible depending on type of 
interaction between networks involved: 

• Architecture version based on a model “master–slave” (it can be named more exactly as 
“conductor–performer” model); and 

• Architecture version based on multiple-agent model. 

For the “conductor–performer” model there are N neural networks execute required tasks and some 
(N+1)th network, which “conducts” the other nets: “conductor” orders and “performers” obey. 
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In case of the multiple-agent version of the network ensemble there are N relatively autonomous and 
relatively independent neural networks associated with the task set. These networks interact with each 
other according to some rules. Such interaction is organized to solve all tasks entered in the task list. 

It may be stated concluding the discussion that human operator experience and skills together with 
techniques of semi-soft computing allow to solve various important tasks associated with the problem of 
system-level integration of control. 

4.4 AUTONOMOUS VEHICLES 

4.4.1 Automation and Autonomy 
The Free Dictionary (www.tfd.com) defines automation as: 

• The automatic operation or control of equipment, a process, or a system. 

• The techniques and equipment used to achieve automatic operation or control. 

Humans have been developing automated systems for centuries. With the advent of modern computers, 
the complexity of automated systems has risen exponentially and has resulted in systems that exhibit 
autonomous capabilities. 

Autonomous is defined as: 

• Not controlled by others or by outside forces; independent, and 

• Independent in mind or judgment; self-directed. 

Due to the generic nature of autonomy, individual disciplines have defined their own unique meaning to 
autonomy, with is specific for the context of their research. The following sections reflect the diverse 
meanings that researchers have applied to the words “Automation” and “Autonomy”. 

4.4.2 Autonomy for Robotics Systems 
Under the Wikipedia definition, autonomous robots “are robots which can perform desired tasks in 
unstructured environments without continuous human guidance.” Given this definitions, one route to 
achieving autonomous operation is the SMPA paradigm [Brooks], where robots sense, model, plan and 
act. Thus, the components of autonomy may be itemized as follows: 

1) Sensing: Via proprioception, the robot senses its own internal status, while exteroceptive sensors 
allow the robot to sense the external environment. 

2) Modelling: The robot constructs a world representation using sensor data. The representation’s 
fidelity must allow obstacles and hazards to be identified. Commonly used world representations 
include: occupancy grids [Moravec], 2½ D representations [Broten 2007a] and, potentially,  
3 D representations. Into this representation, the robot may insert other types of information such 
as known landmarks and features. 

3) Planning: In order to accomplish a task, the robot must plan a course of action. This plan must 
account for the robots internal status, the current environment, and the task or mission goal. 

4) Acting: With a plan in hand, commands must be sent to the actuators and motors that physically 
propel the robot. Historically, a monolithic SMPA implementation resulted in poor performance 
as modelling and planning caused the system to be slow and unresponsive. In order to make the 
act stage responsive, a hybrid architecture, that is composed of both reactive and deliberative 
control strategies, is commonly implemented [Rosenblatt, Simmons]. 

http://www.tfd.com/
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In addition to the traditional SMPA paradigm, some leading edge robotics systems have adding learning to 
enhance autonomous capabilities. Learning can be invaluable as it allows a robot to adapt to environment 
changes such as variations in lighting conditions and seasonal environmental changes [Thrun]. 

4.4.3 Complexity for Autonomous Systems 
For autonomous systems, complexity manifests itself in different ways: 

1) Complexity of the operational environment. 
2) Complexity of the task or mission to be performed. 
3) Co-operation between multiple autonomous systems also leads to complexity. 

The following sections provide more details with respect to the complexity encountered by each of the 
above items. 

4.4.3.1 Environmental Complexity 

The environment encountered by an autonomous system varies greatly. Both UAVs and UUVs operate in 
relatively simple and forgiving environments. Once above the ground plane, a UAV’s environment is 
almost completely obstacle free. While operating in this benign environment, a UAV has only minimal 
requirements to sense its world, and no need to create a world representation. Although a world 
representation is not required, there are environmental conditions that add other forms of complexity.  
This complexity can be lumped into two large groups: 

1) The atmosphere directly affects the vehicle’s motion. These effects include turbulence, shear, and 
vortices. These atmospheric effects may have a considerable influence on the vehicle’s linear and 
angular motion, and are potentially catastrophic in terms of accidents (recall wake effects caused 
by large vehicles on smaller ones, for instance). 

2) Other contributors to complexity include: boom motion during aerial refuelling, deck and optical 
system motions during carrier landing, target maneuvering and landing on extremely short 
runways. 

UUVs operate in environments that are similar to those encountered by UAVs. A UUV, operating in deep 
water, can also assume a benign and almost obstacle free environment. As UAVs and UUVs approach 
ground terrain the environmental complexity increases significantly and eventually approach the complex, 
unstructured environments in which UGVs must operate. 

UGVs must operate over a wide range of environments, from those with low complexity, to those with 
high complexity. The following items are example UGV environments. 

1) A low complexity environment as shown in Figure 4.9 (Parking lot or highway, open fields with 
no or very little vegetation). 

 

Figure 4.9: A Low Complexity Environment. 



COMPLEXITY, AUTOMATION AND AUTONOMY 

RTO-TR-SCI-144 4 - 19 

 

 

2) A medium complexity environment, which is shown in Figure 4.10 (Open fields with vegetation, 
gravel or dirty roads, urban streets). 

 

Figure 4.10: A Medium Complexity Environment. 

3) A high complexity environment is shown is Figure 4.11 (Heavily vegetated terrain such as forests 
or jungles, terrain featuring rubble whether it be in a natural or urban setting, building interiors, 
actively hostile areas). 

 

Figure 4.11: A High Complexity Environment. 

Currently, autonomous systems usually operate in low complexity environments. Research robots have a 
limited ability to operate medium complexity environments. Operations in high complexity environments 
are not possible given the current state of autonomous systems development.  

4.4.4 World Representation and Understanding 
Due to the complexity associated with ground environments, autonomous ground vehicles must sense and, 
at some level, understand their environment. The process of representing and understanding the world may 
be considered from many points of view. A stationary sensor can create a world representation, but its 
inability to move means this representation has limited internal uses. A sensor mounted on a human 
piloted vehicle can create a world representation, which humans may use to enhance situational 
awareness, but it is the human who does the interpreting and understanding.  

Tele-operated vehicles require a human in-the-loop, where there is a heavy reliance upon the human for 
input and guidance. Thus, the tele-operated vehicle has limited requirements for world representations. 

For a system to exhibit autonomy, it must make arrive at it own conclusions and internally direct it 
actions. A fundamental prerequisite to planning and decision making is representing and understanding 
one’s environment. 
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4.4.4.1 A Ground Vehicle Perspective 
Robotics researchers, especially those focused on ground vehicles, have expended significant energies in 
developing applicable world representations. Due to the inherent complexity of a UGV’s environment, 
researchers in this field were forced to confront the world representation issue at an early stage in their 
research. Over the years, this research has yielded solutions that allow UGVs to successfully navigate 
unstructured terrain, but only terrain of a low to medium level of complexity [Broten 2007b, Herbert, 
Kweon, Bellutta, Goldberg, Lacroix, Kelly]. These solutions “represent the world”, but they make little 
effort to “understand” it. In a representation such a 2 ½ D terrain map, all obstacles are equal.  
The classical terrain map implementation does not differentiate between true physical obstacles such as 
stones and concrete, and soft obstacles such as grass or shrubs. 

Achieving “understanding” via learning is a new and emerging field of research. Understanding via learning 
allows a robot to learn from experience, thus it adapts to changes. Specific research has focused on adapting 
to environmental changes for unmanned ground vehicles. The Stanley robot, from Stanford University, uses 
probabilistic learning to enable high-speed operation in unstructured terrain [Thrun]. Other researchers have 
investigated how to differentiate between vegetation and true obstacles [Macedo]. Finally, NASA 
researchers have developed algorithms that predict wheel slippage from visual information [Angelova]. 

4.4.4.2 Understanding from the Machine or Computer Vision Perspective 
Scene understanding remains one of the most difficult problems for machines to overcome. An example 
would be automatic target recognition (ATR) where machines are good at looking for a precisely defined 
object, but can not recognize a general class of objects (i.e. they can not pick out the cup on the table 
unless the cup is precisely defined).  

4.4.5 Single and Multiple Platform Systems 
Complexity, automation, and autonomy appear within single as well as multiple platforms. In this respect, 
either system may be preferable depending on the mission requirements. A problem that would be well 
served by a single-asset solution could be identified for instance by the following characteristics: 

1) Hard to separate into pieces: 
• Highly interdependent system dynamics. 

2) Physical dispersion adds little benefit: 
• Simultaneous actions add little; and 
• Sequential tasking is adequate/optimal. 

3) Information transfer is costly/inadequate: 
• Threats make communication undesirable; 
• Geographic separation makes communication difficult; 
• Terrain/environment make communication difficult; and 
• Time lags and latent data compromise stability or optimality. 

A problem that would be well served by a multi-asset solution, on the other hand could be characterized 
by: 

1) Easy to separate into pieces: 
• Dynamics are loosely coupled; and 
• Time-scale separation is apparent. 
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2) Physical dispersion can be used to great effect: 

• Simultaneous tasking has great utility; and 

• Sequential tasking is inadequate. 

3) Information transfer is not costly: 

• A global information state can be maintained; 

• Local information is adequate; and 

• Lags and latency are acceptable. 

All this with the caveat that the complexity of some problems is so overwhelming that separation is the 
only realistic option available. The benefits of having multiple assets add degrees of freedom to the 
solution of a problem, e.g. allowing a choice of vehicles to service a target. However, the flexibility comes 
with additional complexity that is imposed in the form of constraints, e.g. a target must be confirmed 
before attack, and attacked before battle damage is assessed. So, the meaning of “complexity and 
automation” for multiplatform systems perhaps implies different concepts from those associated with 
single platform systems. 

Other key factors that make a multi-asset solution different from a single-asset solution are: 

1) Problem division; and  

2) Information availability. 

The former includes actions/items such as Order of precedence (Kill chain), Coupling of tasks, 
Performance, Computations. The latter deals primarily with Communication, Centralization of processing, 
Correlation of targets, and Moving targets. 

4.4.6 Co-operative Control Operations 
In this section the challenges of cooperative control operations are outlined. To fix ideas, the discussion is 
focused on a simplified surveillance scenario. A team consisting of a flight of Unmanned Air Vehicles 
(UAVs) is tasked with searching for and recognizing multiple targets in a battle space with many false 
targets. Allowing for an unstructured environment in cooperative control operations is essential.  
The presence of false targets/clutter forces one to consider a probabilistic setting. While the dynamics of 
unmanned air vehicles and, in particular small air vehicles are important, considerations relevant to 
resource allocation and optimization, the prevailing information pattern and unstructured environment/ 
uncertainty dominate the analysis. The potential benefits of cooperative team actions, and, in general, the 
benefits of cooperation among distributed controlled objects are addressed. 

4.4.6.1 A Taxonomy of Teams 

A team is here defined as a loose collection of spatially distributed controlled objects, a.k.a., Unmanned 
Air Vehicles (UAVs), that have some objectives in common [Ho et al., 1972; Marschak, 1972].  
Air vehicles may be too restrictive a term – generically, a team consists of members, or agents, and the 
team can (and generally will) include humans as operators, task performers (think of target recognition), 
and/or supervisors. The presence of a common objective forges a team and induces cooperative behavior. 
If the air vehicles are working together to achieve a common objective, then they are considered 
cooperative. Different degrees are possible: coordinated; cooperative; and collaborative. At the same time, 
additional individual objectives of the team members can encourage team members to opt for a weak 
degree of non-cooperative, competitive, or adversarial action. 
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When team decision and control problems are discussed, it is important to address the unstructured 
environment/uncertainty, the organizational structure, the information pattern, and task coupling. 
Individual operational scenarios can be dominated by one of the above, but will contain elements of all of 
them. The interaction of these different facets of cooperative control of a team cannot be ignored. 

4.4.6.2 Team Coordination 

This is the strongest degree of cohesive team action. Consider a set of UAVs that have been designated to 
be part of the team, and they all share a single team objective and thus strive to optimize a single payoff 
function. The team could have more than one payoff function that it wishes to optimize, which would then 
entail multi-objective optimization [Luce, 1989]. Oftentimes, the different payoff functions can be 
assigned weights and rigorously combined into a single objective function. There is no conflict of interest 
among the team members, otherwise an incentive scheme [Groves, 1973] would need to be devised.  
The important distinction here is that particular team members do not have individual objective functions: 
a team member is a resource that can be over-utilized or under-utilized, if that will best achieve the team 
objective. The team members are obligated to participate and any assignments, tasking, or agreements are 
binding; they cannot opt out. At the same time, the forming of coalitions is not possible. The team may be 
geographically distributed, but it operates as a single unit. 

4.4.6.3 Team Cooperation 

Each of the team members has a private objective function which he strives to optimize, in addition to the 
team objective function. The private and team objective functions are weighted such that 0 ≤ w ≤ 1.  
A weight of w = 1 on the private objective function means the member acts in its own self interest, in 
which case there is no team action. A range of 0 ≤ w ≤ 1 on the private objective functions corresponds to 
an increasing level of cooperation of the team members, to where w = 0 entails strict coordination.  
There is a possibility for conflict of interest, but, due to the structure of the objective functions used,  
it is not generally dominant. In most cases, local objectives such as fuel conservation and survivability are 
not in conflict with the team objectives and can be jointly achieved. Thus, the multi-criteria optimization 
aspect of the problem is not dominant and a weighted sum of the objective functions yields a conventional 
optimization. If they are in conflict, the team objective takes precedence according to the weight used. 

4.4.6.4 Team Collaboration 

This is a looser form of cooperation. In some cases this can be the result of the task assignment or resource 
allocation method used [Guo, 2001; Bertsekas, 1992, Bertsekas, 1991; Bertsekas, 1993; Bertsekas,  
1993 b]. At the global (team) level, the focus is on task completion, a.k.a., feasibility. Each team member 
tries to maximize his local objective function consistent with team task completion while avoiding tasking 
conflicts. This requires that a protocol be designed for negotiation to arbitrate conflicts [Olfati-Saber, 
2003; Lamport, 1998]; this connects with the currently developed theory of communication networks. 
Ideally, those tasks that are best for each member to perform according to their private objective function 
are tasks that need to be done for the team objective function. In addition, there is the additional implicit 
constraint that the selected tasks are not redundant. Here there are possibilities of significant conflicts of 
interest: if the team members have a set of equally valuable (to them) tasks, then likely the conflicts can be 
resolved (mutually agreeably), and collaboration can be as efficient as coordination. Obviously, the more 
tightly coupled the various team tasks are, the more difficult it is to achieve a collaborative solution. 
Strong coupling will occur if a homogeneous team of multi-role UAVs is employed, or if the battle-space 
is small. A coordinated or cooperative operations approach will be needed. Also, negotiation is not 
compulsory; the members are not forced to participate. If a solution for a particular team member cannot 
be found, then this team member can opt out and join an alternative team that has a better overall match of 
member objective with team objective. 



COMPLEXITY, AUTOMATION AND AUTONOMY 

RTO-TR-SCI-144 4 - 23 

 

 

4.4.6.5 Goal Seeking Team Action 

This is a further abstraction of a team decision and control problem. Here there are no a priori designated 
team members. The team is formed from a set of available resources that are loosely networked.  
Each UAV can simultaneously be a member of several teams. Once a team’s objective is achieved,  
the team will dissolve. The goal in general is abstract and has to be converted to a sequence of 
intermediate objectives/milestones and the objectives in turn have to be converted into a set or sequence of 
tasks that are assigned to, and coordinated between, the team members. There might be an intrinsic 
conflict of interest between the goals of the teams that the UAV can simultaneously be a member of.  
The teams are therefore self organizing [Jadbabaie, 2003]. This results in a high level of autonomy,  
where the vehicles are independent agents that however work together in an ad hoc fashion, as needed,  
to achieve an overarching goal. Each vehicle also strives to optimize its utility function, which may be 
handled through coordination, as previously mentioned. 

4.4.6.6 Non-Cooperative Behavior 

To this point we have been describing the different modes of how UAVs interact with other UAVs in a 
team. In a team, by construction, the objectives are basically compatible. 

We now address the control of UAVs that are operating in teams that are competing and, possibly, 
adversarial. If there are two teams, this is the domain of a significant part of game theory research.  
This includes strictly competitive zero sum games and also non zero sum games, e.g., bimatrix games 
[Vorobev, 1977; Luce, 1989]. This is the field of much military research as in the Blue team against the 
Red team war game. However, the field is much richer than this, because in reality there can also be,  
e.g., a White team and a Green team. What’s more, membership in a team can change fluidly, and the 
teams can form coalitions which can also dissolve. This is a rich area in which complementary  
and conflicting interests, collusion, hidden objectives, signalling, diversion, gambits, propaganda,  
and disinformation play a significant role. 

4.4.6.7 Conflict of Interest 

Conflict of interest is brought about when the UAVs have different objective functions which, in addition, 
are structured such that joint action which simultaneously optimizes the different objective functions is not 
possible or feasible. Thus, consider the performance functionals J1(u, v) and J2(u, v) for UAV 1 and UAV 
2, respectively; the decision variables of UAV 1 and UAV 2 are u and v, respectively. The payoff for 
UAV 1 is a function of the actions (or decisions) u taken by UAV 1, as well as the actions (or decisions)  
v taken by UAV 2. Each affects the value of the other’s objective function. If the objective functions were 
not coupled, that is, J1(u) and J2(v), then obviously there would is no conflict of interest. Alternatively,  
if J1(u, v) = J2(u, v), there is no conflict of interest either. 

If this is not the case and an ahead of time communicated plan (an agreement) is not in place, then this 
definitely is a non-cooperative scenario. The question is, what strategy does UAV 1 use to determine the 
“best” action u to minimize his cost J1? Similarly, UAV 2 is faced with the problem of minimizing his 
cost J2. The actions u∗, v∗ are “best” if J1(u∗, v∗) ≥ J1(u∗, v)v and J2(u∗, v∗) ≥ J2(u, v∗)u.  
This means that if UAV 2 deviates from v∗, then UAV 1 will do better than J1(u∗, v∗) and if UAV 1 
deviates from u∗, then UAV 2 will do better than J2(u∗, v∗). Thus, J1(u∗, v∗) and J2(u∗, v∗) 
constitute guarantees for the respective players, no matter what the other player/vehicle does. This is a 
Nash (non-cooperative) equilibrium point [Vorobev, 1977; Luce, 1989]. 

Now consider the definition of “best” where u∗ and v∗ is the point where no further improvement 
(reduction) in J1 can be made without an increase in J2, and conversely, no further improvement 
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(reduction) in J2 can be made without an increase in J1. This is a Pareto (cooperative) equilibrium point 
[Luce, 1989]. 

There are two problems associated with the Pareto equilibrium concept. 1. Should UAV 1 choose another 
action u_ and deviate from u∗ whereas UAV 2 sticks to his Pareto choice of v∗, then J2(u_, v∗) > 
J2(u∗, v∗) and J1(u_, v∗) < J1(u∗, v∗). Now UAV 1 did better, at the expense of UAV 2. 2. In general, 
Pareto equilibria are not unique and therefore an agreement is needed or side conditions imposed on the 
actual Pareto equilibrium used. 

If both vehicles cooperate and agree to play the Pareto equilibrium solution, then they both can do better 
than the outcome provided by the Nash equilibrium. This is the benefit of cooperation. However,  
the “agreement” to play Pareto must be rigidly enforced; else one side can choose an action that results in 
a one sided benefit to one of the teams, at the expense of the other. If the “agreement” cannot be rigidly 
enforced, then the players are better off playing Nash, because at least they’ll get the guarantee. The latter 
can be computed ahead of time, before the game is ever played. One might then decide whether it’s at all 
worth playing the game. 

In the context of human behavior, Pareto games provide an incentive to cheat [Deissenberg, 2001].  
Hence, the “contract” must specify a penalty for one of the parties breaking it. If the parties are strictly self 
interested, an expected cheating value calculation can be made which is a function of [Reward – 
Penalty∗P(caught|cheat)]. Of course, the other party in the agreement can make the same calculation and 
both could violate the agreement, which means that both parties could end up with less than the Nash 
(non-cooperative) value. This much studied predicament is referred to as the “prisoners’ dilemma” [Luce, 
1989]. 

It is not at all clear if these considerations have much bearing on UAV team performance, but they abound 
in human teams. For example, in team sports each of the members share the objective of his team winning 
the game by accumulating more points than the opposing team. There are a series of plays and roles that 
are agreed on that could be considered a Pareto solution. However, one of the players might have a 
different objective that is not revealed upfront. That is, his objective is to maximize the points attributed to 
him, not necessarily to win the game. His team mates stick to the playbook, he scores more points, he wins 
(becoming more valuable), and his team loses. 

Concerning adversarial behavior in an Unmanned Aerial Vehicles (UAVs) team, consider a network 
(team) of geographically distributed assets that have a range of overlapping capabilities. These assets 
service targets as well as provide services to other UAVs. These services have a variety of values and 
associated costs. Each UAV attempts to provide the highest valued services at the lowest cost [Rasmussen, 
2003]. Still, if each of the vehicles, driven by its above stated self interest, engages in the pursuit of 
maximizing value and minimizing cost, then, under mild assumption and in realistic non-contrived 
scenarios, this should cause minimal churning and lead to maximizing the value for the team. In the 
context of UAV teams, situations where the UAVs have very different objectives and consequently self 
interest at heart, exhibit predatory behavior toward each other, as well as actively practice deception, are 
not envisaged. 

4.4.6.8 Distributed Decision and Control Systems 

Figure 4.12 introduced a classification of distributed decision and control systems [Bertsekas, 1989; 
Smith, 1981]. The “centralized” quadrant represents classical centralized control [Dantzig, 1963; 
Bertsekas, 1995]. The complete state information from the distributed UAVs is sent to a center where the 
Decision Maker (DM) resides. No independent action is taken by the UAVs. This control concept can 
render optimal control action in so far as complex constraints and coupling/interactions between the 
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vehicles can be properly accounted for and not assumed away. Algorithms used here include dynamic 
programming [Murphy, 1999; Puterman, 2005, Ross, 1983], large linear programs [Dantzig, 1963] and 
nonlinear programming [Bertsekas, 1995]. This, in turn, causes centralized control not to scale well due to 
the curse of dimensionality. In addition, a centralized optimal control structure might suffer from fragility 
and a lack of robustness to e.g., missing data. 

 

Figure 4.12: Team Decision and Control Metrics. 

The “hierarchy” quadrant is where decomposition is prevalent. Motivated by the structure of 
organizations, hierarchical control [McLain, 2005] schemes are used – see Figure 4.13. The UAVs send 
the local vehicle state information to a higher level DM. The team members have limited global 
information, but they send their individual cost functions to the higher level DM. Consequently,  
an optimal assignment can be made by the DM that is beneficial to the team as a whole. While a degree of 
robustness is achieved, it is difficult to decompose the control problem and maintain high performance if 
there is appreciable task coupling. This approach is scalable, but optimality, as with the centralized 
solution, is not achieved. 

 

Figure 4.13: Hierarchical Decomposition. 

Optimization techniques used here include network flow programming [Ford, 1962; Nygard, 2001; 
Bertsekas, 1992, Bertsekas, 1993, Goldberg, 1990], mixed integer linear programming [Schumacher, 
2007; Richards, 2002; Alighanbardi, 2003; Schumacher, 2004; Richards, 2002], constraint satisfaction 
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[Modi, 2002; Yokoo, 2000], graph theoretic search algorithms [Nemhauser, 1999], set partition [Balas, 
1976], the relative benefit method [Rasmussen, 2002], iterative auction [Bertsekas, 1992; Bertsekas, 1991; 
Wein, 1995; Bertsekas, 1989; Bertsekas, 1993; Kempka, 1991], negotiation, and consensus schemes 
[Olfati-Saber, 2003], e.g., the Paxos algorithm [Lamport, 1998]. 

The “decentralized” quadrant represents strongly decentralized control schemes [Bernstein, 2003] which 
rely on minimal global information. In the limit, there is no communication at all between the vehicles and 
information is only inferred about the other vehicles objectives by measuring their actions as seen through 
own-ship sensors. This line of work is often referred to as emergent behavior [Jadbabaie, 2003]. There is 
an assumption that the simple low level interactions of the vehicles will result in complex, but more 
importantly, optimal team behavior that meets a team objective. In general, however, this approach leads 
to a mediocre macro level response [Jadbabaie, 2003]. For example, the team maintains some loose 
cohesion, and a nominal center of mass trajectory. The team behavior appears to be complex and one 
marvels at the complexity brought about by a few simple rules. However, the achieved performance here 
is consistently low, due to the dearth of communication and consequently little or no global information. 
Some techniques used here include biological analogies/biomimetrics [Passino, 2005], mechanical 
analogies ala potential fields [Passino, 2005], and parallel auction [Bertsekas, 1991] which might cause 
churning. 

The “predictive” quadrant is the domain of high decentralization and, at the same time, good performance. 
The individual team members are highly autonomous, capable of independent action, but share a common 
objective. Some mechanization concepts come from economics: negotiation [Wellman, 1998]; incentive 
games [Groves, 1973]; consensus voting [Lamport, 1998]; and distributed constraint satisfaction  
[Modi, 2002]. Since there is little global coordinating information, there is a high dependence on state 
estimation and predictive models. The better these models are at estimating future states, the higher the 
overall performance of the team. In general, the more coupled the various tasks the vehicles are to 
perform, the more complex and time consuming the arbitration to resolve the task conflicts. 

4.4.6.9 Complexity in Cooperative Teams 

In cooperative teams an interactive decision making process between vehicles takes place,  
while individual vehicle autonomy is preserved. There is a continuum between centralized and 
decentralized control. If a fully decentralized team means no communication, then in a cooperative team 
the minimum level of globally communicated information that allows the desired level of team 
performance to be achieved, is required. 

In general, the performance of cooperative control can be characterized by task coupling, uncertainty, 
communications delays, and partial information. The interaction of these dimensions renders cooperative 
optimal control a complex problem. Currently there is no working theory of cooperative systems that takes 
into account all these dimensions. A hierarchical decomposition is normally tried to reduce the problem to 
more digestible bits, but optimality is forfeited in the process. Some degree of coupling is ignored to 
achieve decomposition. This results in a suboptimal solution which is traded for solvability and some 
degree of robustness. Indeed, many times robustness comes at the expense of optimality, and vice versa. 
Indeed, the optimal operating point might be sensitive to changes in the problem parameters. 

Team control and optimization problems are decomposed in space, time, or along function lines. Forming 
of sub-teams of UAVs and tasks can also be done by graph theoretic methods [Papadimitriou, 1982],  
set partition approaches [Balas, 1976], and relative benefit optimization techniques [Rasmussen, 2002],  
as well as by brute force search [Rasmussen, 2003]. The sub-team optimization problem (see Figure 4.13) 
then reduces to the multiple assignment problem; determine the task sequence and timing, for each team 
member, that satisfies all the constraints while minimizing an overall team objective function.  
The individual vehicles then perform their own task planning and send coordinating information, 
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preferably a sufficient statistic, around the network or to a team leader. Algorithms for constrained 
multiple task assignment include: heuristic search, e.g., branch and bound, Tabu search, or genetic 
algorithms [Balas, 1996]; generalized assignment [Burkard, 1998]; linear programming [Dantzig, 1963]; 
iterative network flow [Bertsekas, 1992; Goldberg, 1990]; and iterative auction [Bertsekas, 1988; 
Kempka, 1991]. One of the primary contributors to the complexity of multiple assignment is task coupling 
in the face of floating timing constraints – the latter brings in aspects of job shop flow optimization,  
or scheduling. 

4.4.6.10 Task Coupling 

UAV team missions such as suppression of enemy air defences and wide area search and destroy are 
dominated by coupled tasks with floating timing constraints. There are a number of issues involved in 
solving the multiple assignment problem in a cooperative framework. Chief among these is the ability to 
decouple assignment from path planning for specific tasks. This means that tasks and path plans are 
generated to determine costs that are then used in the assignment process. The assumption is that these 
calculations are still valid after the assignment is made. This is even more so for tour sequences. Unless all 
possible tours are generated, sub-optimality is being ignored when chaining together tasks. 

Also, decoupling assignment from timing is often done. For example, task tours are assigned first.  
Then the task order and precedence are enforced. This can be done myopically to set the task time using 
the earliest task that needs to be done, then the next, etc.; or the task times can be negotiated between the 
vehicles until a set of task times is arrived at that satisfies all the timing constraints. The assumption here 
is that these task times will not have a different, closer to optimal assignment. The decomposition 
assumptions to address coupling may lead to infeasibility, where all the tasks can not be assigned, as well 
as a significant degree of sub-optimality a.k.a., poor performance. If the task coupling is strong, 
decentralization is a bad idea [Rasmussen, 2003] – optimality is sacrificed, the algorithm might induce 
churning, and worse, feasibility is not enforced. 

4.4.6.11 Uncertainty 

Some cooperative team problems can be dominated by uncertainty rather than by task coupling.  
This is true for those missions where the target identification, target localization, threat identification, and 
threat location are not known in advance. Some of this information may be known, while the rest is 
estimated using a priori given probability distributions. The challenge is to calculate the expected future 
value of a decision or action taken now. For example, if the UAVs use their resources on targets now, 
there may be no reserves left for targets that are found later and that have even higher value [Girard, 2006; 
Freeman; Ross, 1983]. At the same time, actions taken now might decrease the level of uncertainty. The 
latter can be gauged using information theoretic concepts. Possible choices are to myopically follow the 
decision path of least risk, or follow the decision path that maximizes the possible options in the future. Of 
course, the safest and middle of the road decisions are not generally the best. Furthermore,  
one source of uncertainty is associated with the actions of an adversary in response to an action taken by 
the UAVs. Possible approaches to account for uncertainty are stochastic dynamic programming 
[Puterman, 2005; Ross, 1983], Markov decision processes [Lovejoy, 1991; Puterman , 1994], Bayesian 
belief networks [Jensen, 1996], information theory [Gallager, 1968], and, in the case of no information – 
game theory [Vorobev, 1977; Luce, 1989]. 

4.4.6.12 Communication 

The basic premise of cooperative control is that the UAVs can communicate whenever and as much as 
they need to. All networks incur link delays, and if these delays are sufficiently long compared to the time 
between events (see Figure 4.14), they can completely nullify the benefits of team cooperation 
(cooperative control). Recall that control system delays in the feedback path are conducive to instability.  
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A critical choice here is whether the team decisions are synchronous or asynchronous. Synchronous 
implies that there is a common (and up to date) data base accessible to all the vehicles. If an event occurs 
locally, the event and all associated information is shared across the network and a decision based on the 
new event cannot occur until this happens. Under this protocol, a slow actor can slow down the whole 
team and compromise time critical tasks. Strategies are needed to maintain team coherence and 
performance. Asynchronous decision protocols, while more robust to delays, are much more difficult to 
verify in order to prove correct operation, are susceptible to inconsistent information across the network, 
and can lead to decision cycling/churning and, what’s worse – infeasibility. The higher the rate of 
occurrence of events, the more difficult these problems become because the input’s frequency exceeds the 
system’s “bandwidth”. Some useful protocols include consensus voting [Olfati-Saber, 2003], parallel 
computing [Bertsekas, 1989; Bertsekas, 1995], load balancing [Bertsekas, 1989], job shop scheduling 
[Sycara, 1996], and contract nets [Smith, 1981; Sandholm, 1993]. However, with false information and 
sufficient delays, consensus may never be reached. Indeed, false information strongly negates the benefits 
of cooperative control. The situation is somewhat analogous to the feedback control situation: feedback 
action is superior to open loop control, provided the signal to noise ratio in the measurement is high.  
One then takes advantage of the benefit of feedback. If however the measurements are very noisy,  
one might be better off ignoring the measurements and instead opt for open loop (feed-forward or model-
based) control. 

 

Figure 4.14: Notional Coordination Metric. 

4.4.6.13 Partial Information 

Decentralized control [Kuhn, 1953] and cooperative teams are characterized by limited or partial 
information. The full information state is not available anywhere in the network. Worse, the information 
pattern is not nested. The challenge is to perform the tasks cooperatively and achieve a degree of 
optimality under limited and distributed information. 

A specified level of team performance and team coherence requires a minimum level of shared 
information, e.g., the team objective function, a subset of the relevant events – e.g., pop up target 
information, and part of the state vector, e.g., the fuel state of the UAVs. There should be sufficient 
information to ensure that all the tasks are accounted for and the tasks are consistent. 

This can be considered the “sufficient statistic”. Also, the vehicles may have state estimation and 
prediction models to provide information that is not available locally. Interestingly, the vehicles may have 
different objective functions as well as inconsistent and delayed information that can result in conflicts 
that need arbitration or negotiation. False information (see Figure 4.15), in particular, can induce poor 
performance in a cooperative team – one may be better off using non-cooperative control. 
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Figure 4.15: Family of Receiver Operating Characteristic (ROC). 

For a fixed parameter c in Figure 4.15, the operating point on the ROC determines both the probability of 
correct target classification, and the probability of a false positive. The parameter is set by the flight 
condition and the operating point is determined by the threshold setting in the sensor. 

4.4.6.14 Operator 

Fundamental to the field of cooperative control is the level of realized team autonomy. A continuum of 
team autonomy levels is possible, from completely autonomous action from release, to human operator 
management by exception, to human operator management by permission – the latter being the least 
autonomous. These different autonomy levels can exist as a function of engagement phase or current task, 
and dynamically change as a function of system state. Furthermore, an autonomous team is a network of 
distributed functionality, where for example an operator could provide the critical target recognition 
functionality (difficult to accomplish “by machine”), interface to outside systems, and/or provide 
supervisor functions. Autonomous target recognition is a long range goal and it therefore makes sense to 
assign the object classification task to a human operator. 

In the context of stochastic cooperative control, the operator can introduce significant uncertainty.  
Chief among these are operator errors, e.g., object classification errors, and delays. If the team consists of 
a number of vehicles all sending sensor streams to an operator, the operator’s workload can be high, which 
would increase the operator’s delay and error rate. For time critical UAV operations a high degree of 
automation of team decision and control is required. To this end, a model of the human operator’s 
performance is needed [Pew, 1998], e.g., the probability distribution function of the operator delay or the 
operator’s error rate – as in a Poisson process model [Parzen, 1960] 

Close coordination of a UAV team, including the operator, can be maintained in spite of significant 
communication delays and processing delays associated with operator cognition phenomenology, operator 
workload, and operator errors. These operator characteristics must be captured in a stochastic model and 
incorporated into a controller obtained by solving a stochastic program. This enables robust team 
coordination to be maintained despite a significant level of uncertainty brought about by operator 
misclassification of objects of interest, as well as delays. 

4.4.6.15 Adversary Action 

Much of the research done to date on cooperative teams has been with passive targets, not allowing for 
intelligent adversary action. 
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Although threats were incorporated into simulation models, the targets did not react to actions taken  
by the UAV team in the work described herein. While in some simulation studies threats do react to  
UAV actions, behavioral/reactive modelling is routinely used, namely, the threats’ reactions are  
pre-programmed and the strategy is known ahead of time to the UAV team. For example, should a UAV 
penetrate a missile engagement zone, it will be fired upon. For the known missile emplacements,  
UAV trajectories are planned around the zone ahead of time. If there is an approximate distribution of 
threats, then UAV trajectories are planned based on the threat expected locations. Unplanned for threats 
encountered by the UAV trigger a fixed set of UAV responses, such as evasion, or a deviation around the 
new threat is replanned. Addressing adversary action on the fly is fundamentally different, in that the 
intelligent adversary observes the state of the engagement, is cognizant of the attacker’s capabilities,  
and solves for his optimal strategy. Here a UAV or team of UAVs must derive a strategy based on the 
possible actions the adversary may take for every action that the UAV team may take. This two sided 
optimization problem explodes exponentially for increasing sequences of action-reaction “moves”.  
This can be cast as a dynamic programming problem if all the possible action/reaction pairs are known. 
Such two sided optimization problems are solvable offline for a modest number of stages, a.k.a., a few 
moves deep, so that the computed optimal control strategy can be implemented online. 

Making the situation even more complex is the possibility of adversary deception such as the employment 
of decoys, diversions, traps, and false information. For example, the employment of decoys complicates 
the operator’s classification task and thus causes an increase in the rate of false positives. This, in turn, 
depletes the team’s resources, adversely affecting the team’s performance. 

4.4.6.16 Algorithms for Cooperative Control 

Following is a partial list of algorithms that could be used for cooperative control of a team of UAVs.  
We refer to the relative benefit optimization method [Rasmussen, 2002], network flow [Nygard, 2001], 
iterative network flow [Rasmussen, 2003; Goldberg, 1990], iterative auction [Bertsekas, 1992; Bertsekas, 
1998], decomposition (assign, then time) [Rasmussen, 2003], parallel auction [Wein, 1990], combinatorial 
or bundle auction [Guo, 2001, Mixed Integer Linear Programming (MILP) [Schumacher, 2007; Richards, 
2002; Schumacher, 2004; Richards, 2002], Partially Observable Markov Decision Processes (POMDP) 
[Lovejoy, 1991], Bayesian belief networks [Jensen, 1996], Genetic Algorithm or generalized search 
[Rasmussen, 2003; Passino, 2005], centralized or distributed constraint satisfaction or optimization 
[Yokoo, 2000], stochastic dynamic programming [Puterman, 2005; Ross, 1983], job shop scheduling 
[Sycara, 1996], vehicle routing [Toth, 2002; Reinelt, 1994], parallel computing [Bertsekas, 1989], voting 
or consensus [Olfati-Saber, 2003; Lamport, 1998], contract nets [Smith, 1981], games [Vorobev, 1977; 
Luce, 1989], receding horizon to periodically reevaluate the strategy [Cassandras, 2002; Mayne, 1990], 
and multiple agent systems [Wellman, 1998]. 

While not exhaustive, this is a good cross section of the available options for cooperative control 
algorithms synthesis. For strong task coupling, the centralized algorithms such as MILP and dynamic 
programming can give optimal solutions for problems that are computationally tractable. For scenarios 
with weak task coupling, network flow and auction protocols are reasonable approaches, while for 
scenarios with an intermediate level of task coupling one can call on iterative methods, including relative 
benefit. Many forms of uncertainty can be accounted for using stochastic dynamic programming, POMDP, 
or Bayesian belief networks. Some of these can also account for various levels of coupling, but they are 
not readily decomposable. More strongly decentralized approaches such as distributed constraint 
satisfaction and parallel auction cannot easily capture coupling among different tasks. Asynchronous 
parallel computing may address some of the communication issues previously discussed. 

In summary, there is no one approach that addresses all the manifold facets of cooperative control.  
The development of heuristic methods and iterative schemes geared to addressing the dominant traits and 
the specifics of a particular operational scenario is required. 
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4.4.6.17 Coupling of Tasks vs. Decentralization vs. Communication 

Each of the distributed decision and control approaches or algorithms discussed, as applied to the 
cooperative team problem, has certain advantages which can be brought to bear on the team problem at 
hand. A notional trade space is shown in Figure 4.16, where strength of task coupling, communications 
volume/bandwidth, and the degree of decentralization feature. The corners of the cube, labeled 1 – 8,  
show those approaches that appear to be more suitable to address the problem characteristics represented 
by that node. The origin, or node 3, is typified by: weak task coupling or few constraints; full information, 
that is, a centralized or nested information pattern; and very low communication costs – high bandwidth, 
near zero delays, and complete connectivity. The single assignment optimization problem with binary 
decision variables and simple constraints can be posed as a network flow problem. This class of integer 
programs can be solved using slow relaxation techniques, or fast specialized binary tree search algorithms. 
The control can be partially distributed through implicit team coordination, which is where the centralized 
solution is computed, redundantly, by each of the UAVs. 

 

Figure 4.16: Coupling–Decentralization–Communication Trade Space. 

As the cost of sending messages increase, the need for redundancy could motivate us to use the centralized 
network flow approach shown at node 4. Concerning node 3: as the tasks become more strongly coupled 
and, particularly, when floating timing constraints are included, the network flow solution is not suitable. 
MILP can rigorously include both integer and continuous constraints. While a full information 
(centralized) scheme, the same approach can be used to have the solution computed redundantly by each 
of the vehicles, as at node 1. As the cost of sending messages increases, the need for a degree of 
redundancy leads one to use the centralized MILP algorithm, which could also be formulated as a dynamic 
program at node 2. Receding horizon optimization can reduce the computational burden, enhancing 
scalability, and also reduce the need for information about the environment, but at the expense of 
optimality. 

One objective of cooperative teams is to distribute the control so that the UAVs can operate more 
autonomously, but cooperate in performing team tasks. Decentralization increases in moving from node 3 
to node 7. The Jacobi auction [Kempa, 1991] iterative algorithm, while intuitively appealing, is, in its 
basic form, mathematically equivalent to the network flow optimization problem. This iterative 
optimization scheme does not require full information locally, but it does require a centralized auctioneer 
with an attendant increase in the message load. Continuing to node 7, the centralized auctioneer is 
eliminated in the asynchronous parallel auction scheme. Again, this is feasible because only the simple 
constraints (coupling) of network flow are active, and the very low message cost does not incur a penalty 
on iteration (bidding). The full benefits of parallel computing are not achievable, since targets cannot be 
processors. 
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As the task coupling strength increases at node 7, the simple constraints easily accommodated using 
parallel auction based algorithms, are no longer appropriate. Combinatorial auction at node 5,  
where bundles of goods are traded, is a mechanism by which more extensive task constraints can be 
included: coupled tasks are bundled together during the UAVs bidding phase. In the worst case,  
every feasible permutation could be a separate object to bid on. Preparing such bids may require full 
information. Timing constraints cannot be readily incorporated, and combinatorial auctions cannot be 
directly layered on top of a parallel auction. From node 7, as communication costs increase, parallel 
auction – based protocols are no longer appropriate, since the latter are contingent on near instant 
messages. Distributed constraint satisfaction type resource allocation algorithms at node 8 may be 
preferable because less messages are needed, and they are strongly decentralized. Only simple constraints 
can be accommodated here, however. 

Finally, at node 6, we have the most challenging case of strong coupling, minimal communications, and 
strong decentralization. No one approach or solution could address these requirements, and, in some cases, 
no suitable approach currently exists which addresses all the requirements, since, in some sense, they are 
contradictory or mutually exclusive. One practical strategy is to apply a network flow, auction, or parallel 
auction algorithm iteratively for a fixed (receding) horizon. While not optimal, this allows more complex 
constraints to be incorporated, including timing constraints. This is a two stage strategy, which partially 
decouples task assignment from task planning. The minimum deviation task times allow the vehicles to 
refine their trajectories (or bids) to meet the team task constraints. 

4.5 ARTIFICIAL INTELLIGENCE 

Historically artificial intelligence (AI) research focuses on the simulation of human-intelligence; today this 
is called strong AI. Modern AI though is concerned with producing useful machines to automate human 
tasks requiring intelligent behavior. One area of modern AI is AI robotics which concentrates on bringing 
the software intelligence to the hardware realization. In practice the machines are developed to work 
autonomously utilizing the least human interaction possible. In order to help AI robotics, several 
competitions are held challenging different areas of the research, such as legged robots, wheeled robots, 
flying robots, all in different sizes and also human like robots to name a few. 

The research focuses on developing an autonomous flying robot and since this area is a very new field of 
research it is necessary to look at what the other fields have achieved. 

The closest to the UAV application are the ground robots which are discussed in the literature 
exhaustively. 

4.5.1 Architecture 
The first subject to address is the robot architecture which is well described in [Coste-Manière]. Basically 
in the process of designing an architecture for robotic systems several requirements have to be set, from 
computational power restrictions through hardware arrangements to modularity for future enhancements. 

4.5.2 Uncertainty 
The greatest challenge in AI robotics is posed by the operation in unknown environment as described in 
[Saffiotti]. Industrial robots are capable of highly complex actions but they lack the reaction to changes in 
the environment; in other words they operate in an environment that is assumed to be completely known to 
them. 
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4.5.3 Deliberative Architectures 
The early robotics scientist tried to solve the challenge of handling uncertainty by developing systems that 
would gather information about (sense) the environment and react to changes in it by planning their 
sequence of actions accordingly, hence the name deliberative architectures. These systems showed their 
disadvantage immediately because of the very limited computational power at that time. The moment an 
event occurred (a deviation from current states and ‘planned current’ state) the replanning had to be 
initiated and thus it took a relatively long time to carry out a mission. A sophisticated deliberative 
architecture is presented in [Saffiotti]. 

4.5.4 Reactive Architectures 
A new wave of research started with the introduction of reactive robotic architectures which lacked the 
world model and therefore the exhaustive planning and acted ‘instinctively’. These robots were 
impressively fast in carrying out missions but having no model of the environment prevented them from 
being able to achieve complex tasks. 

4.5.5 Three-Layer Architectures 
A natural evolution of architectures was to create hybrid systems capable of both reactive and deliberative 
behaviors. These are the three-layer architectures described in detail in [Gata]. Today most of the 
architectures are based on the three-layer concept but differ in accordance to what they are designed for. 

An excellent overview of existing architectures in respect to an aerial vehicle implementation is presented 
in [Burridge]. 

4.5.6 Cognitive Architectures 
A different approach originates from the cognitive science. Researchers developed cognitive architectures 
that emulate human behavior. These are based on observing human behavior and possess a structure 
accordingly. These systems evolved into highly complex structures and are widely used on different fields 
of AI research; the most popular being Soar described in [Lehman]. The use of cognitive architectures for 
aerial combat simulation which is closely related to the problem of coordination of unmanned vehicles is 
presented in [Jones]. The serious disadvantage of these systems is their need for massive computational 
power. 
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