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Theme 
Corrosion, corrosion fatigue and many other forms of environmentally assisted cracking continue to be major 
cost drivers for the operators and maintenance organizations responsible for military aircraft. This document 
reviews some of the developments in understanding of corrosion and corrosion related problems that have 
occurred since NATO, through its Advisory Group for Aerospace Research and Development (AGARD), 
published one of its last major works on the topic in 1985 (AGARD-AG-278, Volume 1). Several other 
organizations have made major contributions in the field since 1985, and both AGARD and later the RTO have 
looked at a variety of problems related to aging aircraft and their engines. This particular publication focuses on 
aging aircraft and provides some of the latest information on corrosion covering costs, detection, 
characterization, assessment of damage, repair and avoidance. But perhaps the major development over the past 
25 years has been an improved understanding of how corrosion related issues affect aircraft structural integrity 
and safety, and how these effects can be modelled and managed. The present publication places particular 
emphasis on developments in these areas. While the focus is on aging aircraft many of the issues addressed will 
be applicable to some degree to other types of military vehicle in use today. 
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