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ABSTRACT 

This manuscript first studies cardinality tracking, a special case of the general multi-target tracking 

problem for which measurements do not provide any target state information. That is, each scan only 

provides information as to how many targets are present. We address the problem with a modified form of 

the multiple-hypothesis tracking formalism using sets of hypotheses.  Optimal track extraction may be 

performed due to the special structure of the problem.  Hypothesis aggregation turns out to be essential in 

determining reasonable solutions to the cardinality tracking problem. Next, we consider the multi-target 

filtering problem for closely spaced targets, for which most available solutions incur track coalescence or 

track repulsion. The approach used for cardinality tracking – hypothesis aggregation – provides 

motivation for an approach to multi-target filtering that we call equivalence-class MHT. The idea is to 

choose a solution that, while suboptimal, is similar to many other solutions that, collectively, maximize the 

global posterior probability. That is, rather than seeking to identify a MAP solution, we seek a MAP set of 

solutions. We demonstrate improved performance of this approach over classical PDAF and MHT 

solutions in two-target closely-spaced scenarios.  

1 INTRODUCTION 

Track-oriented multiple hypothesis tracking (MHT) is well-established as a paradigm for multi-sensor 

multi-target tracking.  The fundamental approach includes many variants.  Hypothesis-oriented MHT was 

first proposed by Reid [1].  The initial integer-programming formulation of the problem is due to 

Morefield [2].  The hybrid-state decomposition that allows for computationally efficient track-oriented 

MHT is due to Kurien [3].  An efficient solution to the optimization problem required for n-scan 

hypothesis pruning via Lagrangian relaxation is due to Poore and Rijavec [4].  Linear-programming based 

relaxation approaches to the optimization problem were proposed independently by Coraluppi et al [5] and 

by Storms and Spieksma [6].   

In [7], we proposed a modified MHT approach that is more effective at suppressing spurious tracks.  The 

approach is motivated by optimality results that one can prove in the limit of large measurement errors.  In 

this limit, we are faced with a cardinality tracking problem in which we seek only to identify how many 

targets are present. Unfortunately, cardinality tracking highlights a weakness in the MHT formalism, in 

particular its selection of a maximum a posteriori (MAP) tracking solution.  This solution may not perform 

well with respect to metrics of interest. 

As an example, consider a biased coin with p(heads)=0.6.  Toss the coin 100 times.  Assume there is no 

measured data.  What is the maximum a posteriori estimate for the number of heads?  The answer, 100 

heads, provides a very poor estimate of the actual number of heads in the realization (close to 60). 

Indeed, in cardinality tracking, given a sufficiently high false alarm rate the null solution (no tracks) is the 
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MAP solution.  To circumvent this difficulty, in Section 4 we introduce an approach whereby all 

indistinguishable global hypotheses are treated together.  As such, the revised MHT formalism identifies 

the likeliest class of hypotheses.  We call this the cardinality tracker. A similar paradigm turns out to be 

extremely useful in addressing multi-target filtering problems for closely-spaced targets. We describe the 

problem in Section 5 and propose an equivalence-class MHT (ECMHT) solution in Section 6.  

Performance results are promising; the ECMHT appears to suffer neither track coalescence nor track 

repulsion, and provides more accurate tracking estimates than the well-known classical approaches. 

Concluding remarks are in Section 7. 

2 THE MULTI-TARGET TRACKING PROBLEM 

We start by stating the general multi-target tracking (MTT) problem of interest. We are given a 

continuous-time Poisson birth and death process with birth and death parameters   and  , respectively. 

We consider a discrete-time sequence  ,...,, 210 ttt  with inter-sampling times defined by kkk ttt  1 , 

0k . Correspondingly, we have the following discrete-time birth and death statistics; note that these do 

not account for birth-death events between sampling times, as these remain invisible to the sampling 

process. 

    1exp1  kb tk 







  , 1k ,     (2.1) 

   1exp1  ktkp   , 1k .      (2.2) 

We assume there are no targets at time 0t . When the inter-sampling time is constant we may omit the 

time index and write b  and p . 

 

For each target, we assume the initial state follows the probability density function  bf  defined over 

target state space. We assume that a time-invariant continuous-time target motion model and discrete-

time measurement model at times  ,..., 21 ttt k   are known. While the linear-Gaussian model is common, 

it is not required. Let  bf̂  denote the target birth distribution in measurement space. Further, let 

 1| k
k YYf  denote the probability density for the sensor measurement on a target at time kt  given a 

preceding sequence of measurements. Let dp  denote the target detection probability at all scan times, and 

let 
fa  be the mean of the Poisson-distributed number of false alarms at each scan time; these are 

distributed in measurement space according to  faf . 

 

Let 
k  denote a multi-target realization based on the birth-death statistics and target motion evolution 

discussed above. That is, 
k  is a set of target trajectories defined on  ,..., 21 tt .The set 

k  is not to be 

confused with 
kX , the latter being the usual notation for a single-target trajectory given by 

 k
k XXX ,...1 . Each element of 

k
 
is a distinct target with a birth time, a state trajectory, and 

(possibly) a death time. Based on the sensor modeling discussed above, we observe a sequence of sets of 

contacts  k
k ZZZ ,...,1  at a sequence of times kt . We denote the contacts in each set with a double 

subscript as follows:  
iZiii ZZZ ,...,1 . 

 

Arguably, a solution to the multi-target tracking problem is given by the probability distribution 
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 kk Zp |  over all sets of target trajectories conditioned on the sequence of sets of measurements. This 

solution is problematic for at least two reasons. The first is that, even for small problems,  kk Zp |  
is 

extremely complicated to compute. A second difficulty is that, generally, one is interested in a specific 

tracking solution (i.e. a deterministic set of tracks) rather than a probability distribution over tracking 

solutions. Indeed, most tracking paradigms documented in the literature seek an estimate 
k̂  that is close 

to 
k . Since 

k̂  
and  

k  
are complex objects, the issue of what are appropriate tracking metrics to 

capture the notion of close is a topic of interest in its own right. Generally, we find that several metrics 

are required to quantify the quality of a tracking solution. 

 

3 MULTIPLE-HYPOTHESIS TRACKING 

In multiple-hypothesis tracking (MHT), one seeks the maximum a posteriori (MAP) tracking solution. 

That is, we seek the following: 

 kkk Zp |maxargˆ  .     (3.1) 

The estimate 
k̂

 
given by (3.1) is difficult to compute. Thus, we proceed with a hybrid-state formulation 

that will aid us in determining an approximation to 
k̂ . We introduce the discrete state variable kQ ; this 

variable identifies all birth, death and measurement-association events up to time kt . Conditioned on kQ , 

the general tracking problem simplifies to a set of nonlinear filtering problems. One could recover the 

original tracking formulation by a weighed combination over all discrete-state realizations, as stated with 

eqn. (3.2). Rather, we see the MAP estimate for kQ , given by eqn. (3.3). Next, we rely on the 

approximation given by eqn. (3.4) to replace eqn. (3.1) by the much simpler eqn. (3.5). 

     kk

Q

kkkkk ZQpQZpZp
k

|,||   .    (3.2) 

 kkk ZQpq |maxarg .     (3.3) 

   kkkkk qZpZp ,||  .     (3.4) 

 kkkk qZp ,|maxargˆ  .     (3.5) 

To conclude, since solving (3.1) is intractable, the MHT approach can be understood as the selection of a 

single high-probability global hypothesis (eqn. 3.3), followed by the determination of the corresponding 

tracking solution (eqn. 3.5). 

In order for the MHT approach to be both computationally viable and utilizable in real-time, we do not 

have the luxury to wait for all the data 
kZ  to be received and for all possible discrete-state hypotheses to 

be considered as prescribed by eqns. (3.3-3.5). Thus, one generally introduces a number of simplifying 

steps. One approach is to select the global hypothesis 
kq  incrementally, with a fixed delay relative to the 

incoming sequence of measurement sets. This is often referred to as nscan pruning. Also, not all possible 

discrete states are considered: unlikely measurement associations are not considered, track hypotheses are 

terminated when sufficiently degraded (e.g. after several missed detections) with no earlier track-

termination hypothesis spawn. (These comments will become clearer with the example at the end of this 
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section.) 

Even with incremental, real-time (albeit fixed-delay) determination of the global hypothesis 
kq , generally 

it is computationally infeasible to consider explicit enumeration of global hypotheses. Fortunately, is 

possible to cast the determination of the optimal global hypothesis as an optimization problem in which 

feasible global hypotheses are implicitly defined by constraints on the set of local or track hypotheses that 

compose the global hypotheses. A local (or track) hypothesis identifies the birth event, measurement 

associations, and (possibly) death event for a single target. This approach to MHT, which does not require 

explicit enumeration of global hypotheses, is often referred to as track-oriented MHT (TO-MHT) or multi-

dimensional assignment (MDA). 

A key enabler for TO-MHT is the following recursive expression that relates the posterior probability of 

global hypothesis  k
kk QQQ ,1 , to the posterior probability of its constituent hypothesis  1kQ  [3] and 

to local track hypotheses associated with track terminations, track missed detections, track updates, and 

track births. 
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kk ZQpQZZfZZfc 111 |,|| ,    (3.7) 
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,|
!

exp
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.   (3.8) 

In equations (3.6-3.8), kc  is a normalizing constant independent of kQ ;   is the number of targets at 1kt ; 

d  is the number of detections of existing targets at kt ;   is the number of target terminations at kt ; b  is 

the number of detected target births at kt ; fbdr   is the number of measurements at kt  
(with f

 
being the number of false alarms); kd ZJ  , kb ZJ  , kfa ZJ   is the set of measurements that are from 

existing targets, from new targets, and false alarms, respectively;
 kj Zz   is a measurement at time kt . 

Let us consider a simple example and illustrate MHT processing at a high level. Assume 

1,2,1 321  ZZZ . There are many possible discrete states kQ ; for each, there is a corresponding 

global hypothesis k . Figure 3.1 enumerates the full set of 40 possible discrete states (and, thus, 40 

global hypotheses). In Figure 3.1,   denotes a track coast, i.e. track existence in the absence of a 

measurement update;   denotes a track termination. Figure 3.2 illustrates the TO-MHT formulation that 

does not include global hypothesis enumeration; we see that there are 17 local track hypotheses. Assume 

that       31222111
3 ,,,,, ZZZZq  . Figure 3.3 illustrates the result of local hypothesis pruning under 

sequential processing with a one-scan delay (i.e. nscan =1). Note that many competing global hypotheses 

survive. Indeed, in subsequent processing, 3q may well be invalidated. 
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Figure 3.1: Full enumeration of discrete state space (corresponding to 40 global hypotheses). 

11Z

21Z22Z

31Z

21Z 22Z

31Z31Z31Z31Z31Z

 

Figure 3.2: Full enumeration of track hypotheses under TO-MHT (17 local hypotheses). 

11Z

31Z

21Z 22Z
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Figure 3.3: TO-MHT with sequential hypothesis pruning (7 surviving local hypotheses). 
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This example serves to illustrate the fundamental difference between hypothesis-oriented MHT and TO-

MHT. In hypothesis-oriented MHT, one enumerates global hypotheses and identifies the MAP hypothesis. 

In TO-MHT, one solves an optimization problem whose objective function is the global hypothesis 

posterior probability; however, the optimization methodology relies on local track hypotheses and 

appropriate constraints, and does not require enumeration of global hypotheses. 

We have provided as well an illustration of local hypothesis reduction via sequential processing. As 

previously noted, many additional hypothesis-reduction techniques exist, including at the track-generation 

stage. For example, one might choose to spawn only a track coast and no track termination hypothesis on 

the first missed detection, and only a track termination hypothesis on the second consecutive mixed 

detection. Such rules must be chosen judiciously based on target and sensor modeling assumptions. 

Additionally, sufficiently-unlikely association hypotheses are generally discarded via measurement gating. 

4 CARDINALITY TRACKING 

In the case of cardinality-only information, the track-oriented MHT equation simplifies to the following: 

 
     

,
|11

|
11

k

kk

bd
fa

b
b

db
d

d

dkk

c

ZQppppp
ZQp























   (4.1) 

where for all scans b  
is the mean for Poisson-distributed births, 

 fa  is the mean for Poisson-distributed 

false returns, 
 dp  is the object detection probability,

  p  is the object termination probability,
 

 k
k QQQ ,...,1  is the discrete state that accounts for target births and terminations as well as all data 

associations, and kc  
is a factor that is independent of 

kQ . Again, we are interested in the likeliest 
kQ

 

given measurement data (that we denote by 
kq ), and then condition on this hypothesis 

kq
 
to estimate 

target trajectories. In cardinality tracking, each target trajectory is characterized solely by a track initiation 

time and a track termination time: there is no state trajectory. 

The use of (4.1) for cardinality tracking is problematic.  A first difficulty is a computational one: since all 

measurements gate with all tracks, there is a large number of track hypotheses. A more serious concern is 

a large number of comparably-scoring global hypotheses in large-scale surveillance applications, leading 

to the null solution (i.e. no tracks) as the optimal choice under (3.3).  Indeed, for large surveillance 

problems, the posterior probability  kk ZQp |

 

will be very small for all non-trivial choice of  
kQ   (i.e. for 

all but the null solution). Indeed, unlike conventional tracking, measurements are much less informative 

and we lack kinematic filter residuals that lead to relatively large hypothesis scores for some association 

decisions and relatively small scores for others. 

The difficulties associated with identifying a single global hypothesis point to a fundamental limitation in 

the MHT paradigm: the selection of a single global hypothesis. Conversely, it would be beneficial to 

indentify a set of global hypotheses that are indistinguishable (due to measurement equivalence) and that 

provide significant probability mass. We do so next. 

We wish to identify a most probably set of discrete states  kQ , where all member of the set are equivalent 

under measurement re-ordering.  To do so, we must revisit the derivation of track-oriented MHT equations 

and introduce suitable modifications. Further, as with classical track-oriented MHT, we are interested in a 

recursive expression for   kk ZQp |  that lends itself to functional optimization without the need for 
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explicit enumeration of global hypotheses.  We proceed by repeated use of Bayes’ rule. 
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kQ

kkkk
k

k
kk ZQpQZZpZZpc 111 |,|| .   (4.3) 

The recursive expression (4.2) involves two factors that we consider in turn, with the discrete state 

probability one first.  It will be useful to introduce the aggregate variable k  that accounts for the number 

of detections d  for the   existing  tracks, the number of track deaths  , the number of new tracks b , and 

the number of false returns bdr  , where r  is the number of contacts in the current scan. 

            ,,,|,|,| 111111
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The key difference with respect to standard track-oriented MHT is in (4.6), since we must not account for 

differences in which measurements are taken to be track updates, which are taken to be track births, and 

how measurements are assigned to tracks. Substituting (4.5-4.6) into (4.4) and simplifying yields the 

following. 
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Substituting (4.7) into (4.2) and further simplification leads to (4.8). 
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      (4.9) 

Note the multiplicative weights in (4.8) that are not present in (3.6). 

Cardinality tracking expressed via equivalence classes leads both to computational efficiency (there are 

much fewer equivalence classes over global hypothesis than there are global hypotheses) and to a well-

posed formulation whereby a MAP class of solutions is of interest.  Further, the weights in (18) imply 

structural results regarding the form of the optimal equivalence class and optimal track-extraction rules. 

In particular, an optimal tracking solution can be extracted from a so-called Tetris structure, where 

measurements are arranged as shown in Figure 4.1. The advantages of this structure are significant: track 

hypothesis trees are not required, and optimal batch extraction of tracks may be performed, as explained 

below. 

1

1

1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 

Figure 4.1: Each column corresponds to a scan of data. In each column, measurements are 
stacked on top of one another.  Tracks are extracted by considering rows separately. 

First, for each row z in the Tetris structure, we consider separately sequences of measurements divided by 

more that K misses, where 0K  if 1dp ; otherwise, K is given by the largest non-negative integer that 

satisfies: 

   d
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pp
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.    (4.10) 

For a sequence of length N that includes M measurements, the track score is given by (4.11).  Note that, 

for tracks that start at the beginning of the data stream, the steady-state number of targets, 




p

b , applies in 

lieu of the birth rate  b ; likewise, for tracks that reach the end of the data stream, the factor p  
is not to 

be included in (4.11). 

       .111,,,

0
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   (4.11) 

The value K in (4.10) can be determined a priori, independent of the data realization, while the track 

extraction methodology depends both on row number and the input data cardinality sequence.  

Measurement sequences are only extracted if they contribute to the overall posterior probability of the 

hypothesis equivalence class.  Multiple track segments are only extracted as a single track when it is 
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advantageous, again in terms of overall posterior probability of the hypothesis equivalence class.  The 

extraction procedure below is applied separately to each row of data,   iZz max,...,1 . 

It is possible to introduce further hypothesis aggregation in cardinality tracking, yielding improved 

performance. Details may be found in [8]. Further, one may reformulate the cardinality tracking problem 

by relaxing the requirement for integer numbers of tracks and using a simple Kalman filtering approach 

(again, details are in [8]). 

An example. Figure 4.2 illustrates a stochastic realization of ground truth, cardinality measurements, and 

classical MHT and cardinality tracking solutions, the latter based on the hypothesis set formulation 

developed here. The parameters for the realization are as follows: number of scans of data ( 250N ), 

probability of death ( 01.0p ), birth rate ( 1b ), false alarm rate per scan ( 10fa ). The classical 

MHT returns no tracks, thus exhibiting an extremely large track cardinality error.  The cardinality tracker 

tends to identify lengthy tracks. As such, it tends to underestimate the true number of objects, though it 

vastly outperforms the classical MHT solution. 
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truth
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Figure 4.2: A realization of ground truth, cardinality data, and estimation sequences for 
cardinality tracking (with hypothesis set aggregation) and classical MHT. 

5 THE MULTI-TARGET FILTERING PROBLEM 

We consider now the impact of neighboring targets on tracking performance.  We focus on localization 

accuracy for the case of two closely spaced targets.  We disregard track management issues, and will 

consider several schemes for multi-target filtering.  Here, the multi-target filtering problem assumes no 
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missed detections, no false alarms, and no measurement gating. 

We will assume target motion according to a one-dimensional stationary Ornstein-Uhlenbeck (OU) 

motion model [9].  The noise process is independent and identically distributed. Time-discretization of the 

continuous-time process yields the following: 

kkkk wXAX 1 , 








2
,0~0

q
NX ,     (5.1) 

 kk tA  exp , 0 , kkk ttt  1 ,     (5.2) 

  0kwE ,    
q

t
QwE k

kk




2

2exp12 
 .    (5.3) 

The sensor measurement model is the following: 

kkkk vXCZ  ,   0kvE ,   kk RvE 2 .     (5.4) 

Overall, we are given a sequence of sets of measurements       ,...,,,,, 323122211211 ZZZZZZ , where for all 

k we have  21 kk ZZ  .  For all the filtering solutions we consider, the filter initialization and prediction 

equations are given by the following: 

  111 1|1 ZX   ,        (5.5) 

  122 1|1 ZX   ,        (5.6) 

  2,1,1|1 1  jRPj
,       (5.7) 

    2,1,||1  jkkXAkkX jkj
,     (5.8) 

    2,1,||1  jQAkkPAkkP kkjkj
,     (5.9) 

    2,1,|11 111   jRCkkPCkS kkjkj
,    (5.10) 

      2,1,1|11 1
1  
 jkSCkkPkL jkjj

.    (5.11) 

The update equations for the probabilistic data association filter (PDAF) [10] take the following form. 
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(5.12) 

    2,1,2,1,|11 1   jikkXCZk kijij ,    (5.13) 

    2,1,11   jkk ij

i

ijj  ,     (5.14) 
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        ,2,1,11|11|1  jkkLkkXkkX jjjj     (5.15) 

         ,2,1,1
~

|111|1 1   jkPkkPCkLIkkP jjkjj

  

(5.16) 

          ,2,1,11111
~ 22 













  jkLkkkLkP j

i

jijijjj    (5.17) 

with the normalization term given by   
i

ijj kkc |11  . 

The update equations for the global nearest-neighbor filter (GNNF) [10] take the following form. 

     kkXZk k |11 1111   ,      (5.18) 

     kkXZk k |11 2212   ,       (5.19) 

        ,2,1,11|11|1  jkkLkkXkkX jjjj     (5.20) 

      kkPCkLIkkP k |111|1 1   .    (5.21) 

Note that, unlike the PDAF, filter accuracy in the GNNF is data independent.  Further, for this simplified 

problem, the GNNF and the multiple-hypothesis tracker (MHT) with arbitrary hypothesis tree depth are 

equivalent. 

It has been shown that the PDAF exhibits track coalescence [11-12], while the GNNF and MHT exhibit 

track repulsion [13-15]. Several approaches have been investigated to mitigate the impact of track 

coalescence in soft data association filters, see e.g. [16]; an interesting, recently-introduced approach 

performs quite well at the cost of track labeling information [17].  The track repulsion effect in hard data 

association approaches can be mitigated through a multi-stage processing approach [14]. 

Assume that we have a field of k synchronized sensors.  All sensors are characterized by (5.4), with no 

missed detections and no false alarms.  We wish to determine an alternative hard data association, 

motivated by the equivalence-set approach described in the context of cardinality tracking.  Specifically, 

we consider a set of global hypotheses that share the same number of measurement swaps.  There are 

many ways to choose for which sensor to apply the swaps; this leads to (5.22), where the global 

hypothesis on the right hand side is chosen arbitrarily among all those with i swaps, and is denoted by k
iQ . 

    kk
i

kk
i ZQp

i

k
ZQp || 








 .      (5.22) 

Interestingly, although the maximum a posteriori (MAP) solution involves no measurement swaps, the 

same is not true when reasoning over equivalence classes of hypotheses.  We are interested to examine 

whether such an approach provides improved filtering accuracy in dense-target settings. 

As a first analysis step, we consider a single set of (synchronous) sensor measurements. We merge two 

sets of k measurements into a single equivalent measurement, either according to the GNNF paradigm (no 

swaps), or by randomly introducing i measurement swaps before merging.  Next, we examine the 

measurement error of the equivalent measurements, as a function of the number of swaps. 
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The results are shown in Figure 5.1, for a 10m displacement between targets, 30 sensors, and 10m 

measurement error standard deviation.  Results are based on 5000 Monte Carlo realizations.  Interestingly, 

introducing some swaps (about 4) provides a modest reduction in equivalent measurement RMS error. 

Further, the optimal number of swaps obtained empirically is consistent with the posterior probability of 

the optimal hypothesis set, determined according to (5.22) with one randomly-selected element of the set, 

and shown in Figure 5.2. The optimal number of swaps changes as a function of the distance between 

targets.  In Figure 5.3, we show that, as expected, the optimal swap rate is 0.5 for identically-located 

targets and goes to zero for sufficiently distant targets. 
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Figure 5.1: Equivalent measurement RMS error as a function of (random) measurement swaps. 

0 5 10 15 20 25 30
-70

-60

-50

-40

-30

-20

-10

number of swaps

a
v
e
ra

g
e
 l
o
g
 p

ro
b
a
b
ili

ty

10m distance between targets

 

 

unique hypothesis

hypothesis class

 

Figure 5.2: Single-hypothesis and hypothesis-class posterior probabilities. 
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Figure 5.3: Optimal swap rate decreases as targets are more distant. 

6 THE EQUIVALENCE-CLASS MHT (ECMHT) 

The Equivalence-Class MHT (ECMHT) adopts the same initialization and prediction equations as the 

GNNF and MHT.  We assume there are N synchronous sensors.  We denote by  nZ k1

 

the smaller 

measurement from the n
th
 sensor at time kt , and the larger by  nZ k1 .  We have the following filter 

initialization and update equations. 

   
n

nZX 111 1|1  ,       (6.1) 

   
n

nZX 122 1|1  ,       (6.2) 

  2,1,1|1 1  j
N

R
Pj

,       (6.3) 

   
N

R
CkkPCkS k

kjkj
1

11 |11 
  .     (6.4) 

Next, equation (6.5) determines the number of measurements to be swapped.  Note that the each 

summation is understood to be zero when the upper limit of summation is smaller than the lower limit of 

summation.  Once the number of swaps is determined according to (6.5), equivalent measurements are 

formed and the usual filter update equations are applied. 
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     kkXZk k |11 1111   ,      (6.8) 

     kkXZk k |11 2212   ,      (6.9) 

        ,2,1,11|11|1  jkkLkkXkkX jjjj 

   

(6.10) 

      kkPCkLIkkP k |111|1 1   .    (6.11) 

The ECMHT equations given here include some simplifying approximations.  First, we estimate the score 

of a single global hypothesis by separately computing the filter innovation for each measurement in the 

(synchronous) set of measurements based on the current state covariance, rather than computing the filter 

innovation in a coupled, sequential fashion.  Second, we compute the posterior probability of an 

equivalence class of hypotheses based on a single randomly-selected element of the set of similar global 

hypotheses, according to (5.22). One could instantiate a more precise computation of the posterior 

probability of each hypothesis class. 

We now quantify filtering performance based on the PDAF, MHT, and ECMHT.  We adopt the 1D OU 

process with parameters 12secm01.0 q  and 005.0 .  We consider 1000 Monte Carlo realizations of 

length 100, with sec1t .  There are 10 sensors, each with constant measurement covariance  2m1R . 

Since track swap phenomena occur in general, localization performance will be measured according to the 

MOSPA metric, where in each scan we determine independently the best track-truth association based on 

distance [18]. 

Results are in Table 6.1.  We find that the ECMHT performs best, followed by the MHT solution.  The 

impact of track coalescence on the PDAF significantly hampers localization accuracy. Note that the ideal 

solution corresponds to the case where measurement origin is known; this reduces to a classical filtering 

problem to which the Kalman filter may be applied directly. 
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Table 6.1: Optimal swap rate decreases as targets are more distant. 

Filtering scheme MOSPA 

ideal 0.0363m 

PDAF 0.8518m 

MHT 0.1376m 

ECMHT 0.0586m 

 

An illustration of one realization of ground truth and MHT, PDAF, and ECMHT solutions is in Figures 

6.1-6.2. (Both figures correspond to the same truth and sensor data realization.)  
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Figure 6.1: The ECMHT appears not to suffer track repulsion like the MHT. 
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Figure 6.2: The ECMHT appears not to suffer track coalescence like the PDAF. 

7 CONCLUSIONS 

This manuscript introduces an interesting generalization of the MHT formalism, yielding a recursion over 

hypothesis classes rather than over single hypotheses. We do so for a special case of the multi-target 

tracking problem that we call cardinality tracking, where we measure the number of sensor measurements 

and no target state information is available. For this problem, a classical MHT approach does not scale: the 

MAP solution for non-trivial false alarm rates is the null solution. The recursion developed here allows for 

a significantly-improved MHT solution.   

Motivated by the cardinality tracking results, we also introduce an equivalence-class MHT (ECMHT) 

approach to multi-target filtering for a network of synchronous sensors.  The approach leads to promising 

performance results with respect to a recently-introduced label-free tracking metric [18]. The ECMHT 

appears to suffer neither track repulsion nor track coalescence. The benefits of selecting a sub-optimal 

solution under the MAP criterion may be related to a similar effect that has been identified recently in the 

context of distributed estimation with bandwidth constraints [19]. 
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