[image: image14.wmf][image: image15.jpg]

An Enterprise Architecture for the
Delivery of a Modular Interoperability Solution

An Enterprise Architecture for the
Delivery of a Modular Interoperability Solution

An Enterprise Architecture for the Delivery
of a Modular Interoperability Solution

Beat Lang

Armed Forces Command Support Organisation
Switzerland

beat.lang@vtg.admin.ch
Michael Gerz

Fraunhofer FKIE
Germany

michael.gerz@fkie.fraunhofer.de
Olivier Meyer

Cassidian/EADS

France

olivier.meyer@cassidian.com
Douglas Sim

DSTL

Great Britain

drsim@dstl.gov.uk
Abstract
Operational needs are not static; they change rapidly, as the situation in the field evolves, forcing command and control information system providers to react. Interoperability solutions must be flexible to enable changes in such compressed timeframes. However, the development of a modular interoperability solution requires a well-documented and well-understood methodology and organization structure.
In this paper, we propose an approach that is based upon the concept of capability packages and the use of the Unified Modelling Language (UML), the NATO Architecture Framework (NAF), Model-Driven Architecture (MDA), and techniques that enable the automated generation of artefacts. The methodology has been developed within the Multilateral Interoperability Programme (MIP), a standardization committee supported by 29 nations and NATO. A case study was set up to prove that the capability package approach allows the rapid delivery of service specifications that are easily implementable in the various national C2ISs.
1.0
Introduction

Operational interoperability needs emerge from the field when actors are confronted by the necessity to exchange information and to understand it in order to act in a coherent and synchronized way. These needs are far from static: each operation brings its own share of lessons learnt, introducing new needs, altering previous ones, and rending others obsolete.

An interoperability program must offer the flexibility to react to these changing operational needs by providing adapted interoperability features. There is an increasingly challenging requirement to allow easy integration of these features into existing Command and Control Information Systems (C2ISs). Key to meet these requirements is a modular interoperability solution that defines data exchange services to support individual operational capabilities, such as blue force tracking or joint fires.

The development of an interoperability solution should follow a well-documented and well-understood methodology. It should be based on formal models to achieve traceability from the operational requirement to the technical specification and to reduce its level of ambiguity. For that purpose, architecture frameworks such as the NATO Architecture Framework (NAF) and software engineering approaches, e.g., Model-Driven Architecture (MDA), are valuable. The methodology should be based on a modular approach to provide the necessary flexibility, enabling individual modules to be changed independently. However, there is still the need for harmonization between the modules to ensure that the information exchanged between the modules retains its meaning and that the different services they provide can be orchestrated. The methodology (in terms of an enterprise architecture) also addresses organizational aspects required to support this modular approach.

The Multilateral Interoperability Programme (MIP) is an international standardization committee that defines an interoperability solution for joint and combined operations [3]. It experiences broad support by 29 nations and NATO. The most recent interoperability standard, called MIP Baseline 3, was released in October 2009.
The former MIP organizational structure turned out to be insufficiently agile to respond to the demands of developing a flexible solution. The original skill-based working group structure was set up to support the traditional waterfall approach. To explore new ways, MIP has initiated an Integrated Product Team Future (IPT-F) to develop concepts for a future interoperability solution. As part of this concept study, the presented methodology and products were developed. This paper describes the most recent state of the ongoing work.

Following the presented approach, the interoperability solution is based on a number of capability packages that are combined together to form the overarching interoperability solution. Each capability package is developed using SCRUM [4] to deliver the classic requirements specification, architecture design, and component specifications that are well understood by system engineers.

The result of this process is an architectural model for each capability package. The model comprises a set of views and supporting text that formally describe the capability package from the requirements through to the service specification. This set is documented using the NATO Architecture Framework. The NAF metamodel was enhanced to provide full traceability and to support the new views developed to support the model-driven approach.

The capability package architectural models are integrated into the wider MIP enterprise architecture. The lead architect, supported by product unification teams addresses the integration of the individual architectural models and ensures coherence between them. The new methodology is to be supported by tools for model transformation, traceability, and automatic generation of documents. This paper addresses the last topic and the specific issue of being able to produce documents that are generated automatically and still are ‘consumable’ by humans.

1.1
Key Requirements

The presented methodology had to satisfy the following key requirements:

· Traceability – System Requirements must be traced from Operational Needs.

· Flexibility – The future solution must be sufficiently flexible to meet the fluid nature of military operations.

· Support for Incremental Delivery – The solution must support incremental release. Additional capabilities can be added without the need to reissue the whole specification.

· Selective Information Sharing – The solution must be able to support operationally significant subsets of information. Individual systems do not need to implement the whole information set and all exchange mechanisms, only those parts relevant to their users’ operational needs.

· Backward Compatibility – Future versions should be capable of supporting the exchange of information common to both versions. If one member upgrades to a later version of the MIP interface specification, it retains the ability to interoperate with members who have not.

1.2
Basic Elements

The methodology is based on the following foundation elements:

· Capability Packages build the basic units of the overarching interoperability solution. They describe the initial problem, the proposed solution, and the traceability from problem to solution. This enables impact to be identified rapidly if/when the problem space changes.

· The Unified Modelling Language (UML) was used for the architecture and data modelling.

· The NATO Architecture Framework (NAF) was adopted by MIP and supported by tools and profiles provided and maintained by the Swiss Armed Forces.

· Model Driven Architecture (MDA) is an approach that derives models from other models by applying rule-based automated transformations. The MIP methodology maps the MDA layers to NAF views: Computational independent models (CIM) map to NCV and NOV sub-views, platform-independent models (PIM) map to logical NSOV/NSV sub-views, and platform-specific models (PSM) map to physical NSOV/NSV sub-views.
· Automated generation of documents and artefacts from the underlying architectural model is supported. The vision is to generate a single document containing the full specification and description of a capability package including a mix of free-text building blocks, catalogues, matrices, and NAF diagrams.

2.0
OrganiZational Aspects

In the past, MIP developed its interoperability solutions using a traditional waterfall approach supported by skill-based working groups. The groups worked largely in isolation passing artefacts between them as they were agreed by the different groups. This ensured there was consensus between the nations before changes were implemented. However, the large bodies required to achieve this consensus, 40+ people meant that the process was slow to react to change and was neither agile nor flexible to changes in the problem domain.

It was recognized that a new way of working, a methodology, was required to enable the future concept solution to be sufficiently flexible and agile. This would include a more flexible/agile organization structure to support its development.

The MIP IPT-F investigated several different techniques to identify a candidate, which could be adapted for MIP’s own needs. The iterative project management framework SCRUM often used in agile software development was identified as the most suitable candidate. It was not ideal, as MIP does not deliver software but specifications to implement software. In addition, the work pattern for MIP, meeting four times a year for two weeks of intensive work with different people coming to different meetings, meant that some of the assumptions in SCRUM would not be suitable for all of the future process.

It was necessary to combine the benefits of both SCRUM and the former MIP processes in order to achieve both the consensus and agility necessary.
2.1
Overall Structure

The overall organization is managed by an executive supported by an expert panel and the release authority known as the Change Control Board (CCB).
· The executive consists of a chair, deputy chair, secretary and the new post of lead architect. Together they are responsible for the overall delivery and day-to-day management of the solution development.

· The expert panel is comprised of the team leaders from the working teams; it enables an efficient mechanism for information to be reported up and down the chain.

· The CCB consists of a representative of each nation who vote on the acceptance or rejection of changes produced by the working teams into the final solution.
The working teams referred to earlier are:
· The Capability Package Teams (CPTs) are responsible for delivering a complete set of service specifications traced through from the starting required capability and integrated into the wider MIP architecture, e.g., Joint Fires.

· The Product Unification Teams (PUTs) are responsible for delivering and maintaining one of the core elements/products of the MIP architecture, e.g., the capability taxonomy.

These can be thought of as ‘vertical’ and ‘horizontal’ teams working across the whole organization space. The ‘vertical’ teams deliver specific capability whilst the ‘horizontal’ teams ensure continuity. This distinction into ‘horizontal’ and ‘vertical’ aspects is similar to the TOGAF concept of capability-based planning (see chapter 32 of [6]) .

In addition, two other types of teams are needed to ensure efficient working. Whilst these are not working teams in that they do not provide specific deliverables, they supply the coordination and de-confliction required to allow the other teams to work effectively.

· The architecture team who provides an oversight function and retains ‘the big picture’. They support the lead architect who is responsible for the identification and prioritization of the capabilities and the overall delivery of the solution.

· The conflict resolution teams are dynamic in nature and are only formed when a conflict arises. The team members are representatives from those teams who are affected by the conflict, both CPT and PUT. The conflict resolution teams are not expected to deliver a solution but instead are expected to raise a recommendation, which will have minimum impact.

Figure 1 shows how the teams’ work overlaps.

[image: image1.emf]Architecture Team

Product Unification Team

C

a

p

a

b

i

l

i

t

y

P

a

c

k

a

g

e

T

e

a

m

C

a

p

a

b

i

l

i

t

y

P

a

c

k

a

g

e

T

e

a

m

C

a

p

a

b

i

l

i

t

y

P

a

c

k

a

g

e

T

e

a

m

C

a

p

a

b

i

l

i

t

y

P

a

c

k

a

g

e

T

e

a

m

Conflict

Resolution

Team

Figure 1: Working Team Structure.
The majority of the work will be done within the CPTs using a modified SCRUM concept to enable the rapid development of the capability package. Their output will be an architectural model built using the NATO Architecture Framework (NAF) and Sparx EA.

The coherence and coordination of the whole solution is maintained by the lead architect who delegates responsibility for each of the core elements/products to the individual PUTs. The PUTs assess the impact of the proposed changes on their individual products and if necessary may request additional work to ensure coherence. Once a capability package model has been assessed by the PUTs, the solution is proposed to the change control board for approval.

2.2
Capability Package Team Structure
The capability package team is a multi-disciplinary team, consisting of several members from across the operational, system, information, and test communities. A typical team is small, between five and seven people. There are three key roles within the team:
· The Team Leader is responsible for delivering the capability in the given time frame, requesting resources, raising concerns, coordinating and planning the work within the team and presenting to the wider IPT.
· The Capability Owner is normally an operational subject matter expert. He is responsible for providing the single point of truth. He represents the customer community and as such is responsible for ensuring that the capability package specification delivered is operationally relevant and delivers the capability.

· The Team Members are responsible for doing the work.

The selection of the Capability Owner is vital to the delivery of the CPT as a whole. The Capability Owner will effectively act as the ultimate change control authority within the CPT. Any change that affects a unification team’s product will also need to be accepted by its change control authority, i.e., the products owner.

2.3
Product Unification Team Structure
A PUT is single discipline-oriented but may have members from outside the primary discipline if required to support a particular product. For example, the Capability Taxonomy PUT is likely to be operational but will require support from a system engineer to ensure a good taxonomy is developed, which can be used to support the development of multiple capability packages.

A PUT is responsible for monitoring and coordinating the elements of the work produced by the various CPTs to ensure a unified and coherent product is maintained. In addition, it is responsible for providing guidance and advice to the CPTs. The team leader or product owner is responsible for the overall product, the provision of advice (making resources available), and presenting any work to the wider organization.
3.0
The Capability Package In ITS Context
A Capability Package is a set of models and artefacts (documents) completely specifying a self-contained, modular piece of the MIP interface specification, which can be delivered and implemented independently. Typically, a Capability Package specifies a set of data exchange services for a specific subject area, for instance blue force tracking. The formal representation of a Capability Package is a UML model describing a richly connected graph of NAF elements, being organized in a number of NAF views. In addition, free text elements are incorporated in the model providing the building blocks for the generation of supporting documents such as test cases or handbooks.

The overall structure of a capability package and its context is shown in Figure 2. In order not to overload the diagram, views and artefacts that are considered optional or have an auxiliary character are hidden.
[image: image2.jpg]
Figure 2: The Capability Package and Its Context.
3.1
Overarching Views and Artefacts
A number of overarching views and artefacts provide the foundation on which the individual capability packages are built. They describe the general requirements that are common to several (or all) capability packages and the global system architecture design.
· An Integrated Dictionary (NAV-2) is maintained to establish a common wording and a common understanding throughout the MIP community.

· A Capability Taxonomy (NCV-2) serves as a coarse-grain and abstract ‘map’ of the problem space. It is expected to be relatively stable over time (i.e., it should be only slowly changing, and preferably in the form of incremental extensions/additions).

· A High-Level Platform-Independent Domain Model (gNSV-11a’) serves as semantic reference for all information exchange services specified by the future MIP solution. This model is based on the former JC3IEDM. The gNSV-11a’ is explained in detail in section 5.

· A Service Taxonomy (NSOV-1) serves as a ‘map’ of the MIP solution space, whose primary manifestation is the provision of information exchange services. Each service that is specified and implemented as part of the MIP solution is expected to map unambiguously to this Service Taxonomy.

· The Service Design Style is an overarching set of rules that can be applied to logical and physical service design views. It can be seen as a generalization of exchange technology. The design style is not bound to one specific exchange technology; it is intended for a group of similar exchange technologies.

· Concepts on Validation, Verification, and Test provide free-text building blocks that can be used as accompanying text to generate test documentation for individual services.

· A set of Handbook Building Blocks shall be used to generate handbooks for capability packages. So far, two different categories of handbooks are planned: setup and procedures. The setup is related to the MIP solution as a whole, procedures are related to individual services or to categories of services (i.e., elements of the NSOV-1).

The enumeration of overarching products shown in Figure 2 is not exhaustive. The methodology is open to include additional views or artefacts over time (e.g., regarding overarching aspects of the system architecture, security aspects, system functionality, etc.) and to include all or parts of them in the generation of capability package documentation.

3.2
Capability Package Views and Artefacts
The views and artefacts at the right side of Figure 2 reflect the information that is needed to fully describe a capability package: the specific operational requirements, the selected logical service design (independent of an exchange technology (ET)), one or more sets of physical service specifications (specific to a given exchange technology) including a set of technical artefacts, plus a set of supporting documents.

The entry point (or root) of a Capability Package is a notional
 Operational Node Connectivity diagram (NOV-2), which shows the nodes and needlines addressed by the capability package. There should be at least one NOV-2 per Capability Package. The NOV-2 forms the basis for the operational requirements and has the potential to serve as a contract between business and information technology [5]. For each relevant needline shown in the NOV-2, one Operational Activity diagram (NOV-5) is modelled, which shows the Operational Activities and the Information Elements involved (as inputs and/or outputs).
The Operational Activities from the set of NOV-5 diagrams describing the Capability Package are mapped back to the NCV-2 by maintaining an Operational Activity to Capability Mapping matrix (NCV-6). The relationship between a Capability Package and the high-level Capabilities from the NCV-2 could be 1:1 (“the Capability Package implements this Capability”) or 1:n (“the Capability Package supports these Capabilities”). Based on the information in the NCV-6, it is possible to generate a Capability Coverage Map (“which capabilities from the NCV-2 are supported by which capability packages?”).
Starting from the NOV-5, the following modelling steps form two tracks; the structural side describing the information handled (NOV-7, NSV-11x) and the behavioural side describing the expected services to be provided (NSOV-2x).

3.2.1

Structural Views
Each Information Element described in the set of NOV-5’s is reflected as a Data Entity in the Conceptual Information Model (NOV-7) of a specific Capability Package. The NOV-7 is intended to describe the information manipulated (in our case, exchanged) from an operational point of view, so this model should use terms understandable by the operational community. Whilst it may be normalized, it is not necessary at this stage.

From the NOV-7, a capability-specific High-Level Platform-Independent Domain Model (NSV-11a’) is derived. It includes all information/data elements used by the Capability Package. It is obtained by a projection from the CIM-level concepts of the NOV-7 to the high-level PIM constructs of the gNSV-11a’.

From the local NSV-11a’, a Logical Message Model (NSV-11a) is generated. This is a mid-level PIM, containing the additional constructs of the MIP solution, which are deliberately hidden in the global NSV-11a’)
. There could be one NSV-11a per capability package (probably preferred) or one per service; in either case, it is independent from the exchange technology.

From the NSV-11a, one or more Physical (PSM-level) Message Models (NSV-11b) are generated. It is planned to model one NSV-11b per PIM service/exchange technology combination.

3.2.2

Behavioural Views
All Operational Activities described in the set of NOV-5s are analyzed to identify candidates for CIM-level services. For those, a Logical (PIM-level) Service Description (NSOV-2a) is created. The NSOV-2a is independent from the exchange technology and maps to the NSV-11a of the Capability Package. A Physical (PSM-level) Service Description (NSOV-2b) is derived from the NSOV-2a for each exchange technology required. The NSOV-2b maps to the NSV-11b, which is as well specific to an exchange technology. The distinction of Service Descriptions into logical (NSOV-2a) and physical (NSOV-2b) is a MIP-specific extension of the NAF.
3.3
Traceability

Traceability is considered as the ability to navigate from the elements of the problem space (i.e., the operational needs and requirements) to the elements of the solution space (i.e., the information exchange services specified by a future MIP solution) and vice versa. The presented methodology envisions an architecture model that provides full traceability, meaning in fact that no element in the model should be disconnected. This is achieved through the application of the following mechanisms:

· NAF provides a number of explicit dependencies to support trace relationships between elements of different views:

· The «ActivityMapsToCapability» dependency is used to map the Operational Activities in NOV-5 diagrams back to capabilities in the NCV-2; the NCV-6 (Operational Activity to Capability Mapping Matrix) is used to model those dependencies.

· Each «InformationElement» from the set of NOV-5s needs to be reflected by a «DataEntity» in the NOV-7 (Conceptual Information Model). NAF provides the «RepresentedByEntity» dependency to establish this mapping. There is no official NAF view to model this kind of dependency. The proposed workaround is to create a complementary view that is used as a ‘visual container’ to manage those dependencies.

· Some trace relationships are expressed through naming conventions. Example: a «Needline» from the NOV-2 (Operational Node Connectivity Diagram) is detailed by an NOV-5 (operational activity diagram). This relationship is expressed by assigning the same name to the NOV-5 and the corresponding «Needline».

· Other trace relationships can only be managed by explicit mapping tables. Mapping tables are considered auxiliary constructs, which are not described by the NAF metamodel but are used to document model transformations. Example: a capability-specific NSV-11a’ is derived from the global gNSV-11a’ through a transformation based on a QVT (Query/View/Transformation) script. While a QVT script represents a functional description of the transformation process, it provides no traceability at the level of individual model elements. Thus, the MDA approach to derive models from other models should provide a mechanism to document a transformation in a mapping table, which provides traceability between the source elements and the destination elements.

4.0
Generation of Documents and ArtIfacts

The new methodology strongly aims at a highly automated generation of documents and artefacts. Document generation in its narrow sense deals with the generation of integrated documents, which can be delivered in an electronic format to a standard client workplace and are aimed at ‘consumption’ by a human. The generation of WSDL and other technical artefacts is based on the same or similar concepts but aims at ‘consumption’ by machines. Therefore, it is excluded from the scope of document generation.

As outcome of the joint work of the MIP community and Swiss Armed Forces, some key requirements for a document generation capability have been identified:

· TOGAF foresees the following types of products in an architecture repository: catalogues (one-dimensional tables), matrices (two-dimensional tables), and diagrams (graphical views of parts of the model). As described in section 3, there is the need to extend this enumeration by quality-assured free-text building blocks. Furthermore, there is the need for the generation of charts (such as a pie chart). To summarize, the following type of products have to be generated from the repository:

· Products that are stored as such in the repository:

· NAF diagrams

· Free-text building blocks

· Products that are generated from other information stored in the repository:

· Catalogues and Matrices

· Charts

· There is a strong affinity to use and support Microsoft Office products, because they are available to all MIP members. Thus, the generated products should have a file format, which is compatible with Microsoft Word, Excel, and Visio. To summarize, the product types from the repository should map to the following Microsoft Office products:

· NAF diagrams will be delivered as JPEG or EMF documents, which can easily be imported into Word, Excel, or Visio.
· Textual building blocks shall be delivered as Word documents.
· Catalogues and Matrices shall be delivered as Excel sheet (optionally as Word tables).
· Charts shall be delivered as Visio documents (optionally as Excel charts).

· It must be possible to orchestrate one or more single-type artefacts (as listed above) into compound documents. As an example, a full specification of a capability package might be generated as one compound document including a mix of multiple single-type artefacts such as Word documents, Excel tables, etc.

· As shown in section 3.3, full traceability is achieved by a set of specific mechanisms. Therefore, it should be possible to extract all relevant information by applying queries against the model repository.

· The process of extracting information from the model and the process of rendering should be as independent from each other as possible (separation of concerns).

· Once a document has been successfully generated, it must be possible to store the ‘blueprint‘ for its reproduction.

· It must be possible to maintain templates for the rendering process. A ‘descriptive cross-product’ approach for templates is preferred (based on the observation that the purpose of a template is product-independent: to specify paper size and orientation, printing area, headers and footers including variables, and the position and scale factor of graphical logos).
· Good version control is essential, including an intelligent mechanism to mark differences between generated versions of the same document.

4.1
Experimental Work

In the past 18 months, a number of experimental tools have been developed by the Swiss Armed Forces to support the generation of documents and artefacts from a Sparx Enterprise Architecture (EA) repository:

· A tool to create three different types of Microsoft Excel pivot tables from an arbitrary SQL query issued against a Sparx EA repository.

· A tool to create a graphical tree representation (such as a capability taxonomy or a service decomposition) in an Excel sheet or optionally in a Visio chart using a parameterized SQL query issued against a Sparx EA repository.

· A tool to generate a WSDL artefact from the Sparx EA repository (using the information from NSOV-2b and NSV-11b).

Several experiments have been made with the built-in document generator of Sparx EA. The experience made can be summarized as follows: the generator is well suited for an ad-hoc generation of small documents (in RTF format, which is readable by Microsoft Word) but it does not meet all requirements described in the previous paragraph.

Further experiments have been made with the creation of database-layer objects in the Sparx EA repository. Due to the open and well-documented structure of the Sparx EA repository, it is possible to create intermediary products directly in the database (using a set of SQL scripts). Examples of such products are:
· A view that provides a package tree including the full path for each package,
· A trigger that inserts default sets of tagged values for certain element types upon their creation,
· A view that unifies the handling of directed and undirected connectors.

4.2
Outlook
The requirements presented above have been taken as a starting point for an experimental development project at the Swiss Armed Forces. This project, which is currently being set up, is planned to be conducted by an integrated team consisting of members of the Command Support Organisation and a contracting company. The planned timeframe is from now until the end of 2012.

The aims of the project are the following:

· Development of an architecture vision for the Document Generation Capability, with special focus on a clean layer/service model that enables:

· separation of concerns

· orchestration/automation of Capability Building Blocks

· provision of the Capability Building Blocks for different platforms and/or technologies

· (anticipated) reuse of the Capability Building Blocks in a future overarching information management solution of the Swiss Armed Forces

· Experimental development and verification of a ‘best practice’ solution for each of the Capability Building Blocks

· Experimental development and verification of a ‘best practice’ solution for an automation/ orchestration of those Capability Building Blocks

Swiss Armed Forces expect that the first results (i.e., experimental releases of some Capability Building Blocks) will be delivered by the end of 2011.
5.0
The Platform-Independent Domain Model as A “Horizontal” Product

The Joint Consultation, Command, and Control Information Exchange Data Model (JC3IEDM) is one of the key products of MIP. The JC3IEDM covers the information exchange requirements of land component commanders in joint and combined operations. In addition, specific requirements from navy and air force – e.g., maritime mine warfare and air tasking order – have been incorporated in the MIP data model.

The JC3IEDM is based on a few generic concepts such as Object (concrete items and types), Action, Capability, Plan/Order, Context (Information Group), and Location. Most concepts have many specializations. For instance, the JC3IEDM differentiates between five types of objects – Person, Organisation, Feature, Facility, and Materiel – where all but Person span large subtrees.

In the past, the JC3IEDM has been designed in a way that it supported the database replication approach of MIP Baseline 2 and 3. The latest official release of the JC3IEDM, version 3.0.2, is an entity-relationship model, from which a proper database schema can be derived easily. However, since the data model has many platform-specific (database-specific) elements, it is inadequate for use with other exchange technologies and for the modelling approach described above.

In order to overcome known limitations and weaknesses, MIP has started an initiative to restructure the JC3IEDM. The data model has been reworked to better satisfy the requirements for a high-level platform-independent domain model (cf. section 3.1). The restructuring has been driven by the following objectives:

· Platform-Independence: The data model should be applicable with a broad range of technical solutions. The new high-level PIM is specified in the Unified Modelling Language (UML). All database-specific aspects such as primary/foreign key attributes have been eliminated or replaced by object-oriented concepts.

· Modularity: In the past, the JC3IEDM was used as a monolithic data model. For a capability-based approach, it must be possible to derive sub-models that include all data elements needed for the specific capability/service – and not more. The new JC3IEDM makes it easier to identify the relevant parts of the model. This is achieved by, e.g., merging the complementary object hierarchies of the JC3IEDM 3.0.2 (object item, type, and status) into a single hierarchy. Modularity is improved by splitting up classes and enumerations that subsume different operational concepts into several distinct classes.

· Consistent Use of Metadata: One of the structural weaknesses of the former JC3IEDM was the inconsistent use of metadata. For instance, a security classification could only be assigned to a few operational concepts. The new JC3IEDM PIM assumes that metadata can be attached to any kind of information (without actually establishing the technical link between them).

· Consistent Grouping of Information: Likewise, the grouping of information was modelled inadequately before. This has resulted in many implementation problems as unveiled by interoperability exercises.

· Consistent data management: The JC3IEDM 3.0.2 was designed in such a way that the update and deletion of data could be expressed within the model itself. Consequently, a MIP gateway was able to maintain historical data in its JC3IEDM-compliant database and exchange those data with other systems. However, the data structures were complex and did not follow a regular pattern. The new high-level PIM does not care for data management. Instead, those aspects are introduced as crosscutting concerns in the logical PIM (NSV-11a in Figure 2). However, the lifetime of objects (depending on the lifetime of other objects) has been clarified by using the UML concepts of association vs. aggregation vs. composition.

· Strict and Unambiguous Semantics: All business rules that were formerly available in textual or semi-formal notation have been transformed into rules in the Object Constraint Language (OCL). By splitting up associations with different operational meaning into multiple distinct associations, it was possible to express clearly how they are intended to be used.
· Comprehension: The model should be understandable by both operators and engineers. Moreover, it should follow common modelling conventions to lower the threshold for new users. Significant effort has been spent on consistent naming of classes and attributes and refining and simplifying the definitions of attributes. Where reasonable and possible, business rules have been substituted by explicit data structures in order to improve readability of the model.

· Efficient exchange schemas: Although the high-level PIM abstracts from technical concerns, some modelling concepts make it easier to generate concise schemas for information exchange (e.g., XML schemas or CORBA IDLs). Efficient schemas are facilitated by the formal specification of range restrictions and the navigability of association ends.

Unlike the JC3IEDM 3.0.2, the high-level JC3IEDM PIM describes a snapshot of the real world. It is characterized by the following key properties:

· “Stateless”: The model describes the characteristic of objects at an arbitrary but fixed point in time. It is not possible to describe the evolution of an object over time. As noted above, data management aspects are introduced in the logical model.

· “Sourceless”: Handling conflicting information about the same object is also out of scope of the model.

· “Context-free”: The high-level PIM can only be used to describe a single operational situation. It is not possible to model, e.g., the current situation and a planning situation at the same time. There are no data structures to indicate that information co-exists in different contexts.

The assumptions above allowed us to make significant simplifications to the JC3IEDM. Many one-to-many associations have turned into one-to-one associations. This made it possible to merge many classes such as the ObjectItem, ObjectType, and ObjectItemStatus hierarchies mentioned above.

The high-level PIM consists of three sub models describing metadata, information groups, and core operational elements without explicitly linking them with each other (otherwise, the model would lose its key features and much of its simplicity). Figure 3 gives an overview of the high-level PIM.

[image: image3.emf]class Overview

MetadataGroupingCore ElementsMetadataReferenceDescriptionReportingDataSecurityClassificationAppraisalTemporalValidityInformationGroupActionObjectItemOperationalInformationGroupOtherInformationGroupPlanOrderComponentAssessmentGroupAddressAffiliationCapabilityFacilityFeatureLocationMaterielOrganisationPersonPlanOrderAssessment0..10..*10..1+reportingAgent10..*10..*+topic0..1+subTopic0..*10..10..*0..10..10..*110..*+informationClassification0..10..1+geometricDefinition0..10..1+minimumRequirements0..*0..*+nonExecutingOrganisations0..*0..10..*0..*0..*+objects 0..*+subjects 0..*11..*+geometricDefinition0..10..1

Figure 3: The Restructured High-Level Platform-Independent Domain Model.
In order to enforce the consistency of the UML class model and its business rules as well as to support traceability of model changes, several UML-related tools have been developed (see [2]). For instance, all change proposals for the JC3IEDM are formally specified in XML and are automatically applied to the model, thereby enforcing UML and OCL compliance and MIP-specific naming and design conventions.

The latest draft version of the high-level PIM can be downloaded at http://mda.cloudexp.com/DEV/SVN/
PIM/trunk. It is available in Sparx Enterprise Architect format. At the time of writing this paper, all major structural changes have been applied to the data model. For a detailed description of the model, see [1]. However, a final cleanup is outstanding. A stable version that includes an updated documentation is expected by Mid-2012.
6.0
Case Study: a Prototype Capability Package as A “vertical” product
MIP has set up a prototype team to prove that the Capability Package approach can be applied successfully to rapidly deliver service specifications that can easily be implemented by C2IS implementers. In this section, we provide some draft results of this team.

The prototype team focused its modelling work on a ‘core’ subset of the NAF views presented in Figure 2. In particular, mapping tables and matrices (such as the NCV-6) had deliberately been omitted.

The prototype is based on the following operational scenario: nations involved in a coalition operation want to exchange the most current positions of friendly units in order to avoid fratricide.
6.1
Overarching Views

The fragment of a Capability Taxonomy (NCV-2) as shown in Figure 4 was assumed as the starting point. The parent capability that is supported by the Prototype Capability Package is highlighted in blue (Friendly Forces). All generalizations shown on the diagram carry the stereotype «CapabilitySpecialisation», which is deliberately hidden.
[image: image4.emf] NCV-2 Capability Taxonomy

«Capability»Support C2 in a Multinational Operation«Capability»Situational Awareness«Capability»JCOP«Capability»Ground«Capability»Air«Capability»Maritime«Capability»Electromagnetical«Capability»Cyber«Capability»Friendly Forces

Figure 4: Prototype Capability Taxonomy (NCV-2).
The service taxonomy in Figure 5 has been created as a working assumption. The service category, which was implemented in the Capability Package, is highlighted in blue (Business Service). All generalizations shown on the diagram carry the stereotype «ServiceGeneralisation». Again, it is deliberately hidden.
[image: image5.emf] NSOV-1 Service Taxonomy«Service»Generic MIP Service«Service»Business Service«Service»Discovery Service«Service»Infrastructure Service

Figure 5: Prototype Service Taxonomy (NSOV-1).
6.2
Operational Views

The Operational Node Connectivity Diagram (NOV-2), which has been developed by the prototype team, is depicted in Figure 6.
[image: image6.emf] NOV-2 Avoid Fratricide«Node»Headquarters Nation A«Node»Headquarters Nation B«Node»Squad Nation A«Node»Squad Nation B«Needline»ExchangePositionsExchangeFriendlyUnitInformation«Needline»«Needline»ExchangePositionsExchangePosition«Needline»1CommandRelationship«NodeConnector»1..*1CommandRelationship«NodeConnector»1..*ExchangePosition«Needline»ExchangeCriticalAreasOfInterest«Needline»

Figure 6: Prototype Operational Node Connectivity (NOV-2).
For two of the needlines shown in the NOV-2, the prototype team has created operational activity diagrams (NOV-5; see Figure 7). As a naming convention, the NOV-5 is using the same name as the needline.

[image: image7.emf] NOV-5 ExchangeCriticalAreasOfInterest«OperationalActivity»ExchangeCriticalAreasOfInterest«InformationElement»CriticalAreaOfInterest«ActsUpon»

[image: image8.emf] NOV-5 ExchangeFriendlyUnitInformation«OperationalActivity»ExchangeFriendlyUnitInformation«InformationElement»FriendlyUnitInformation«ActsUpon»

Figure 7: Prototype Operational Activity (NOV-5).
The conceptual information model (NOV-7) in Figure 8 has been created for the capability. All solid lines between boxes carry the stereotype «EntityRelationship».
[image: image9.emf] NOV-7 Prototype Conceptual Info Model

«LogicalDataModel»FriendlyUnitInformation«DataEntity»Current Location- coordinate- altitude- time«DataEntity»Hostility- friendly :Boolean = true {readOnly}«DataEntity»Unit Identifier- unitName :String«DataEntit...Unit Size- size«DataEntity»Arm Type- type«DataEntity»Symbol«LogicalDataModel»CriticalAreaOfInterest«DataEntity»ClosedPolygon«DataEntity»Point- coordinateIn order for a

polygon to be a

closed area, it

needs at least 3

different points.

3..*1hasModifierhasModifierhasModifierhasModifierUnitIsWithinCriticalAreaOfInteresthasModifier

Figure 8: Prototype Conceptual Information Model (NOV-7).
6.3
Service Specifications

During the transition from CIM Level to the PIM Level, the prototype team decided to specify a single service, which covers the exchange of Critical Areas of Interest and the exchange of Friendly Unit Information in a combined Publish-Subscribe approach. The Critical Area of Interest is specified as part of the subscription, whereas the Position Update of Friendly Units is delivered as part of the publication (notify call in terms of Web Service Technology). It turned out that the PIM- and PSM-level service descriptions (logical and physical service descriptions; NSOV-2a/b) look very similar
, thus, only the NSOV-2b (Physical Service Description) for the Web Service Technology is shown in Figure 9.
[image: image10.emf] NSOV-2 IndicateFratricideRiskService (NSOV-2b)

«ServiceInterface»ConsumerInterface«ServiceInterface»ProviderInterfaceBusiness Service«Service»IndicateFratricideRiskService«ServiceInterface»ConsumerInterface«ServiceInterface»ProviderInterface«ServiceInterfaceDefinition»NotifyInterface/1::NotifyInterface«ServiceInterfaceOperation»+ notify0(NotifyRequest)«ServiceInterfaceDefinition»SubscribeInterface/1::SubscribeInterface«ServiceInterfaceOperation»+ Subscribe(SubscribeRequest, SubscribeResponse*, ServiceFault*)+ Unsubscribe(UnsubscribeRequest) :voidAProvidesRequiresRequiresProvides

Figure 9: Prototype Service Description for the Web Service Technology (NSOV-2b).
The structure of the parameters referenced by the service operations shown in Figure 9 is described by logical and physical data models (NSV-11a/b). As an example, the NSV-11a diagrams are shown in Figure 10.

Again, the observation was that there is not much difference between the NSV-11a and the NSV-11b
.

[image: image11.emf] NSV-11a NotifyInterface

Messages/1::NotifyNewUnitMessage- objectIdemId :string- unit :Unit- unitType :UnitType- unitLocation :GeographicPoint- temporalValidity :TemporalValidityAbsoluteTiming- reportingData :ReportingData- reportingAgent :OrganisationMessages/1::NotifyNewUnitLocationMessage- objectItemId :string- newLocation :GeographicPoint- temporalValidity :TemporalValidityAbsoluteTiming- reportingData :ReportingData- reportingAgent :OrganisationMessages/1::NotifyRemoveUnitMessage- objectItemId :stringMessages/1::NotifySubscriptionCancelledMessage«AsynchronousMessage»NotifyRequest- subscriptonId :int

[image: image12.emf] NSV-11a SubscribeInterface

«ServiceInterfaceParameter»SubscribeResponse- status :int- subscribtionId :int- textualReason :String«ServiceInterfaceParameter»SubscribeRequest- notifyEndpoin :string- AreaOfIntrest :PolygonArea- RequestingHq :Unit- RequestingHqType :UnitType«ServiceInterfaceParameter»UnsubscribeRequest- subscriptionId :int

Figure 10: Prototype Logical Data Model (NSV-11a).
6.4
Artefacts
From the physical service specification, WSDL artefacts have been created with the aid of a generator. It has been developed for the Swiss Armed Forces in the form of a plug-in for the Sparx Enterprise Architect modelling tool.

6.5
Conclusions

The prototype proved that our methodology permits the rapid development of service specifications for modular pieces of a future MIP interoperability solution.

By May 2011, the prototype specification was finished. A number of MIP nations implemented the prototype service on existing C2 systems, effectively employing two different exchange technologies: Web Services and DDS (Data Distribution Service).

The implementation of the prototype specification has uncovered some problems. In particular the operational and service views are not as technology-agnostic as desired. This hindered the exploitation of some of the key features of DDS. Moreover, the initial data models did not carry enough information to display each unit as a proper APP-6(A) symbol. Consequently, the logical and physical data models have been extended.
7.0
SUMMARY
This paper has presented some of the key building blocks that are expected to help the Multilateral Interoperability Programme to build an interoperability solution able to react quickly to the legitimate demands of the field.
These building blocks are:

· A capability-based approach transforming in an iterative manner the user expectations (formalized by an NCV-2 capability taxonomy)
· A set of NAF views formalizing the content of the documents necessary to define the interoperability solution

· An organization that allows and eases the required iterations in the development process

· a platform-independent domain model that provides the information required by the various Capability packages in a consistent manner that ensures coherence and orchestration between the packages
· Tools to generate the required documents and artefacts in conformance with an MDA approach

Prototyping and experimentation activities are ongoing in order to assess the effectiveness of the building blocks in delivering an interoperability solution fulfilling the user expectations in due time.
8.0
Acknowledgements

The methodology and products described in this paper have been made possible only by the intensive work of a large number of personnel allocated to MIP by the nations. Valuable expertise has been obtained from operational experts, system analysts, information modellers, software developers, testers, and, more generally, from people working in all the fields that are mentioned in section 3. Many thanks to all of them.
9.0
References

[1] Gerz, M. & Meyer, O.: Defining C2 Semantics by a Platform-Independent JC3IEDM. International Journal for Intelligent Defence Support Systems. Special Issue on Command and Control Ontologies. 2011.

[2] Gerz, M., Bau, N., Loaiza, F. & Wartik, S.: Managing Complex Interoperability Solutions using Model-Driven Architecture. In Sixteenth International Command and Control Research and Technology Symposium (16th ICCRTS). Command and Control Research Program (CCRP), Québec City, Canada, June 2011.

[3] Multilateral Interoperability Programme: MIP Standard Briefing. https://mipsite.lsec.dnd.ca/Public%20Document%20Library/10-Supporting_Documents/
MSB_Mip%20Standard%20Briefing/MIP%20Standard%20Brief_110214.ppt

[4] Pichler, Roman: Agile Product Management with Scrum. Addison-Wesley Professional; 1st edition, April, 2010.
[5] Rapier, M.: EA on the Front Line – Support to Op Herrick. Integrated EA Conference, London, March 2011.

[6] The Open Group: TOGAF Version 9. http://www.togaf.org/, 2009.

10.0
Acronyms

APP
Allied Procedural Publication
CIM
Computation-Independent Model (MDA concept)
CPT
Capability Package Team
C2IS
Command and Control Information System
DDS
Data Distribution Service
EA
Enterprise Architect (modelling tools from Sparx Systems Ltd.)
EMF
Enhanced Metafile Format
IPT-F
Integrated Product Team – Future
JC3IEDM
Joint Command, Control and Consultation Information Exchange Data Model
JPEG
Joint Photographic Experts Group (picture format)
MDA
Model Driven Architecture
MIP
Multilateral Interoperability Programme
NAF
NATO Architecture Framework
NATO
North Atlantic Treaty Organisation
NAV
NATO All View
NCV
NATO Capability View
NOV
NATO Operational View
NSOV
NATO Service-Oriented View
NSV
NATO System View
OCL
Object Constraint Language
PIM
Platform Independent Model (MDA)
PSM
Platform Specific Model (MDA)
TOGAF
The Open Group Architecture Framework
QVT
Query/View/Transformation
SQL
Structured Query Language
UML
Unified Modelling Language
WSDL
Web Services Description Language

[image: image13.emf]

� © Crown Copyright 2011 Defense Science and Technology Laboratory

� It does not describe the actual nodes that will be operating in a theatre (1st division HQ, Charlie Company, 101 Artillery Battery…), but rather their generic role (e.g., decision-making command post, requester, provider…).

� We have chosen to make the PIM timeless, stateless and sourceless therefore showing the absolute nature of the information elements and their relationships, and to introduce the notions of history and perception by different persons only in the logical model.

� This term is used to denote the solution building blocks that make up a future Document Generation Capability. We expect them to be implemented as services.

� At the PIM level, the notification mechanism is a generic construct, while at the PSM level (specific to the Web Service Technology), it is implemented as a synchronous call (callback).

� In the NSV-11a, the NotifyRequest is decomposed using specializations; in the NSV-11b, the decomposition is done using compositions. For the SubscribeInterface, NSV-11a and NSV-11b are the same.

RTO-MP-IST-101
8 - 1
8 - 20
RTO-MP-IST-101
RTO-MP-IST-101
8 - 21

_1378643129.vsd
Architecture Team

Capability Package Team

Capability Package Team

Capability Package Team

Capability Package Team

Product Unification Team

Conflict Resolution Team

